Chuyên đề thể tích 1

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Munz

Cho chóp SABCD, có đáy ABCD là hình vuông cạnh a, SA vuông góc với (ABCD) , SA=a√3. Gọi M là trung điểm của SC. Mặt phẳng (∆) chứa AM và song song BD cắt SB tại P , cắt SD tại Q. Tính thể tích SAPMQ ( vẽ hình )

Quyết Nguyễn
2 tháng 8 2023 lúc 11:13

Để tính thể tích SAPMQ, ta cần tìm độ dài đoạn PM và đoạn MQ. Gọi E là trung điểm của BD. Ta có ME song song với AM và ME = 1/2 BD = 1/2 a. Vì (∆) song song với BD nên góc AME = góc ABD = 45 độ. Vì SA vuông góc với ABCD nên góc SAM = 90 độ. Vì SA = a√3 và góc SAM = 90 độ nên tam giác SAM là tam giác vuông cân tại A. Do đó, góc ASM = 45 độ. Vì góc ASM = góc AME = 45 độ nên tam giác ASM và tam giác AME đồng dạng. Vậy, ta có: AM/AS = AE/AM AM^2 = AS * AE AM^2 = (a√3) * (1/2 a) AM^2 = a^2 * √3 / 2 AM = a√3 / √2 AM = a√6 / 2 Ta có ME = 1/2 a Vậy, PM = AM - ME = (a√6 / 2) - (1/2 a) = (a√6 - a) / 2 Tương tự, ta có MQ = AM + ME = (a√6 / 2) + (1/2 a) = (a√6 + a) / 2 Vậy, thể tích SAPMQ = SABC * PM = a^2 * (a√6 - a) / 2 = a^3√6 / 2 - a^3 / 2


Các câu hỏi tương tự
Kate11
Xem chi tiết
Nhi Ý Nhi
Xem chi tiết
Lê Trung Hiếu
Xem chi tiết
Phan Văn Cường
Xem chi tiết
lưu
Xem chi tiết
Xuân Mai
Xem chi tiết
Xuân Mai
Xem chi tiết
Bách Bách
Xem chi tiết
Sơn nguyễn
Xem chi tiết