Cho các số \(x,y\) dạng \(x=a_1+b_1\sqrt{2}\), \(y=a_2+b_2\sqrt{2}\), trong đó \(a_1\), \(a_2\),\(b_1\), \(b_2\) là các số hữu tỉ. Chứng minh:
a) \(x+y\), \(xy\) cũng có dạng \(a+b\sqrt{2}\) với \(a\), \(b\) là các số hữu tỷ.
b) \(\dfrac{x}{y}\) với \(y\) ≠ 0 cũng có dạng \(a+b\sqrt{2}\) với \(a\), \(b\) là các số hữu tỷ.
a/ \(x+y=a_1+b_1\sqrt{2}+a_2+b_2\sqrt{2}=\left(a_1+a_2\right)+\left(b_1+b_2\right)\sqrt{2}\)
\(xy=\left(a_1+b_1\sqrt{2}\right)\left(a_2+b_2\sqrt{2}\right)=\left(a_1a_2+2b_1b_2\right)+\left(a_1b_2+a_2b_1\right)\sqrt{2}\)
b/ Tương tự câu a.