Lời giải:
Áp dụng BĐT Bunhiacopxky:
\((\sqrt{x^2+xyz}+\sqrt{y^2+xyz}+\sqrt{z^2+xyz})^2=(\sqrt{x}.\sqrt{x+yz}+\sqrt{y}.\sqrt{y+xz}+\sqrt{z}.\sqrt{z+xy})^2\)
\(\leq (x+y+z)(x+yz+y+xz+z+xy)=xy+yz+xz+1\)
\(\Rightarrow \sqrt{x^2+xyz}+\sqrt{y^2+xyz}+\sqrt{z^2+xyz}\leq \sqrt{xy+yz+xz+1}\)
\(\Rightarrow A\leq \sqrt{xy+yz+xz+1}+9\sqrt{xyz}\)
The BĐT AM-GM (Cô-si) thì:
\(1=x+y+z\geq 3\sqrt[3]{xyz}\Rightarrow xyz\leq \frac{1}{27}\)
\(x^2+y^2+z^2\geq xy+yz+xz\Rightarrow (x+y+z)^2\geq 3(xy+yz+xz)\)
\(\Rightarrow xy+yz+xz\leq \frac{1}{3}\)
\(\Rightarrow A\leq \sqrt{\frac{1}{3}+1}+9\sqrt{\frac{1}{27}}=\frac{5\sqrt{3}}{3}\)
Vậy \(A_{\max}=\frac{5\sqrt{3}}{3}\Leftrightarrow x=y=z=\frac{1}{3}\)