Cho a, b, c là các số thực dương. Chứng minh: \(\dfrac{a^2}{5a^2+\left(b+c\right)^2}+\dfrac{b^2}{5b^2+\left(c+a\right)^2}+\dfrac{c^2}{5c^2+\left(a+b\right)^2}\)
Cho a,b,c là 3 số thực không âm. Chứng minh rằng
\(\dfrac{\left(b+c\right)^2}{5a^2+\left(b+c\right)^2}+\dfrac{\left(c+a\right)^2}{5b^2+\left(c+a\right)^2}+\dfrac{\left(a+b\right)^2}{5c^2+\left(a+b\right)^2}\ge\dfrac{4}{3}\)
Thấy nhiều thanh niên giải bất quá đăng bài này thử :))
Cho a, b, c > 0. Chứng minh rằng: \(M=\dfrac{5b^3-a^3}{ab+3b^2}+\dfrac{5c^3-b^3}{bc+3c^2}+\dfrac{5a^3-c^3}{ca+3a^2}\le a+b+c\)
Cho a, b, c > 0. Chứng minh rằng: \(\dfrac{19b^3-a^3}{ab+5b^2}+\dfrac{19c^3-b^3}{cb+5c^2}+\dfrac{19a^3-c^3}{ac+5a^2}\le3\left(a+b+c\right)\)
Cho a, b, c > 0 và \(a+b+c=1\). Chứng minh: \(\dfrac{19b^3-a^3}{ba+5b^2}+\dfrac{19c^3-b^3}{cb+5c^2}+\dfrac{19a^3-c^3}{ac+5a^2}\le3\)
cho 3 số thực dương a,b,c thỏa mãn \(\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}=2\) .Chứng minh:
\(\dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{2}\ge\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}+\dfrac{1}{\sqrt{c}}\)
cho a,b,c là các số thực dương. Chứng minh rằng :
\(\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{a^2b}{c^3\left(a+b\right)}\ge\dfrac{1}{2}\left(a+b+c\right)\)
Cho a, b, c là các số dương thỏa mãn: \(a^2+2b^2\le3c^2\). Chứng minh: \(\dfrac{1}{a}+\dfrac{2}{b}\ge\dfrac{3}{c}\)
cho ba số thực dương a, b, c thỏa mãn ab + bc + ca = 3. Chứng minh rằng: \(\dfrac{a^3}{b^2+3}+\dfrac{b^3}{c^2+3}+\dfrac{c^3}{a^3+3}\ge\dfrac{3}{4}\) help me!!!!