-Nếu x < y thì \(\frac{a}{b}\) < \(\frac{a+c}{b+d}\) < \(\frac{c}{d}\) hay \(\frac{a}{b}\) < \(\frac{2m}{2n}\) < \(\frac{c}{d}\)
Suy ra \(\frac{a}{b}\) < \(\frac{m}{n}\) < \(\frac{c}{d}\)
hay x < z < y
- Nếu x > y thì \(\frac{a}{b}\) > \(\frac{a+c}{b+d}\) > \(\frac{c}{d}\) hay \(\frac{a}{b}\) > \(\frac{2m}{2n}\) > \(\frac{c}{d}\)
Suy ra \(\frac{a}{b}\) > \(\frac{m}{n}\) > \(\frac{c}{d}\)
hay x > z > y