Rút gọn biểu thức:
1) \(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\cdot\left(x-1\right)}{\sqrt{x}-1}\)
2) \(P=\left(\frac{\sqrt{x}-2}{\sqrt{x}-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\cdot\frac{\left(1-x\right)^2}{2}\)
3) \(B=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\cdot\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\)
4) \(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right)\div\left(\frac{1}{\sqrt{a}+1}-\frac{2}{a-1}\right)\)
cho B=\(\left(\frac{2x+1}{\sqrt{x^3}+1}-\frac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\frac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)\)
a/rút gọn B
b/tìm x để B=3
cho B=\(\left(\frac{2x+1}{\sqrt{x^3}+1}-\frac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\frac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)\)
a/ rút gọn B
b/tìm x để B=3
Cho biểu thức \(A=\left(\dfrac{2x+\sqrt{x}}{x\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{1+\sqrt{x}+x}\right)\left(\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}-\sqrt{x}\right)\) với \(x\ge0;x\ne1\)
a) Rút gọn A
b) Tìm \(x\) để \(A-2x\) đạt GTLN
Cho biểu thức:
\(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{x}{x-1}\right):\left(\dfrac{2x}{x-1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\)
a. Rút gọn A
b. Tìm x để A = 2
Rút gọn\(A=\left(1-\frac{2\sqrt{x}}{x+2}\right):\left(\frac{1}{\sqrt{x}+2}-\frac{2\sqrt{2x}}{x\sqrt{x}+2\sqrt{x}+2x+4}\right)\)
B1 Cho biểu thức A=\(\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{x-3}{x+2\sqrt{x}+4}-\frac{\sqrt{x}+7}{x\sqrt{x}-8}\right):\left(\frac{\sqrt{x}+7}{x+2\sqrt{x}+4}\right)\)
1, Rút gọn A. Tìm x sao cho A<2
2, Cho 1≤a,b,c≤2. Chứng minh rằng \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le10\)
P =\(\left(\frac{1}{1-\sqrt{x}}-\frac{1}{\sqrt{x}}\right):\left(\frac{2x+\sqrt{x}-1}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right)\)
a, Rút gọn P
b, Tính giá trị của P với x=7-4\(\sqrt{3}\)
c, Tính giá trị lớn nhất của a để P > a
Cho A=\(\left(\frac{2x+1}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\left(1-\frac{x+4}{x+\sqrt{x}+1}\right)\)với x≥0,x≠1
a. Rút gọn A
b. Tìm x∈Z để A∈Z