a) điều kiện xác định : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\\x^2-1\ge0\end{matrix}\right.\Leftrightarrow x>1\)
b) ta có : \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)^2.\dfrac{x^2-1}{2}-\sqrt{x^2-1}\)
\(\Leftrightarrow A=\left(\dfrac{2\sqrt{x}}{x-1}\right)^2.\dfrac{\left(x-1\right)\left(x+1\right)}{2}-\sqrt{x^2-1}\)
\(\Leftrightarrow A=\dfrac{4x}{\left(x-1\right)^2}.\dfrac{\left(x-1\right)\left(x+1\right)}{2}-\sqrt{x^2-1}\)
\(\Leftrightarrow A=\dfrac{2x\left(x+1\right)}{\left(x-1\right)}-\sqrt{x^2-1}\) (đề sai chỗ nào đó rồi)