Cho tam giác ABC. Gọi I là điểm nằm trong tam giác và cách đều ba cạnh của tam giác đó. Qua I kẻ đường thẳng song song với BC cắt AB, AC lần lượt tại E và F. Chứng minh EF = BE + CF
1,Cho tam giác ABC, góc A=120 độ. Tia phân giác góc A và góc C cắt nhau ở O cắt cạnh BC, Ab lần lượt ở D và E. Đường phân giác góc ngoài ở đỉnh B của tam giác ABC cắt Ac ở F
a, C/m BO vuông góc với BF
b, Góc BDF= góc ADB
c, D,E,F thẳng hàng
d,CE cắt BF tại K, tính Góc KAC?
2, Cho tam giác ABC, gọi I là giao điểm của hai tia phân giác góc A và góc B. Qua I kẻ đường thẳng song song với BC cắt Ab tại M, cắt AC ở N. C/m MN=BM+CN
6, Cho tam giác ABC. Các tia phân giác góc B và C cắt nhau ở O. Gọi D,E,F là chân các đường vuông góc kẻ từ O đến BC, CA, AB (D thuộc BC, E thuộc Ac. F thuộc AB) Tia AO cắt BC ở M. Chứng minh OD=OE=OF
b, AB+AC-BC = 2AE
c. góc DOB bằng góc MOC
cho tam giác ABC các tia phân giác của góc B và góc C cắt nhau tại O. gọi D,E,F lần lượt là chân các đường vuông góc kẻ từ O đến BC,AC,AB( D thuộc BC, E thuộc AC, F thuộc AB ) tia AO cắt BC tại M. chứng minh:
1/ OD=OE=OF
2/ \(\widehat{DOB}\)=\(\widehat{MOC}\)
Cho tam giác ABC. Các tia phân giác của góc B và C cắt nhau tại I. Qua I kẻđường thẳng song song với AB cắt AC và BC ởD và E. Chứng minh rằng DE = AD + BE.
Cho tam giác ABC có AB<AC,kẻ AH vuông góc BC tại H,HI vuông góc AC,tại I.Trên tia đối tia IH lấy E sao cho IE=HI
a)So sánh AE và AH
b)Chứng minh AE vuông góc CE
c)Chứng minh góc BAH<góc CAH
Cho Δ ABC vuông ở A (AB < AC ). Vẽ tia phân giác góc B cắt cạch AC ở D. Trên BC lấy điểm E sao cho BE = BA
a) Chứng minh: Δ ABD = △ EBD
b) Chứng minh: DE ⊥ BC
c) Qua B vẽ BF ⊥ AB tại B và BF = AC
Chứng minh: BF // AC
Chứng minh: △ ABC = △ FCB
Các bạn giúp mình nhe nếu vẽ được hình càng tốt
Cho tam giác ABC vuông tại A. Các tia phân giác của các góc B và C cắt nhau ở I. Gọi D và E là chân các đường vuông góc kẻ từ I đến AB và AC
a) Chứng minh rằng AD = AE
b) Tính các độ dài AD, AE biết rằng AB = 6cm, AC = 8cm
Cho tam giác cân ABC, AB=AC. Trên các cạnh AB, AC lần luợt lấy hai điểm P, Q sao cho Ap=AQ. Hai đoạn thẳng CP, BQ cắt nhau tại O. Chứng minh rằng:
a) Tam giác OBC là tam giác cân.
b) Điểm O cách đều hai cạnh AB, AC.
c) AO đi qua trung điểm của đoạn thẳng BC và vuông góc với nó.