+) Ta có: \(H=3+3^2+3^3+...+3^{600}\)
\(\Rightarrow H=\left(3+3^2+3^3\right)+...+\left(3^{598}+3^{599}+3^{600}\right)\)
\(\Rightarrow H=\left(3+9+27\right)+...+3^{597}.\left(3+3^2+3^3\right)\)
\(\Rightarrow H=39+...+3^{597}.39\)
\(\Rightarrow H=\left(1+...+3^{597}\right).39⋮13\)
\(\Rightarrow H⋮13\)
+) Ta có: \(H=3+3^2+3^3+...+3^{600}\)
\(\Rightarrow H=\left(3+3^2+3^3+3^4+3^5\right)+...+\left(3^{596}+3^{597}+3^{598}+3^{599}+3^{600}\right)\)
\(\Rightarrow H=3\left(1+3+3^2+3^3+3^4\right)+...+3^{596}\left(1+3+3^2+3^3+3^4\right)\)
\(\Rightarrow H=3.40+...+3^{596}.40\)
\(\Rightarrow H=\left(3+...+5^{596}\right).40⋮40\)
\(\Rightarrow H⋮40\)
+) Ta có: \(H=3+3^2+3^3+...+3^{600}\)
\(\Rightarrow H=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{599}+3^{600}\right)\)
\(\Rightarrow H=\left(3+9\right)+3^2\left(3+9\right)+...+3^{598}\left(3+9\right)\)
\(\Rightarrow H=12+3^2.12+...+3^{598}.12\)
\(\Rightarrow H=\left(1+3^2+...+3^{598}\right).12⋮12\)
\(\Rightarrow H⋮12\)
\(H=3+3^2+3^3+...+3^{600}\)
\(H=\left(3+3^2+3^3\right)+...+\left(3^{598}+3^{599}+3^{600}\right)\)
\(H=3.\left(1+3+3^2\right)+...+3^{598}.\left(1+3+3^2\right)\)
\(H=3.13+...+3^{598}.13\)
\(H=13.\left(3+...+3^{598}\right)⋮3\)
Vậy H \(⋮\)3