Bài 8: Rút gọn biểu thức chứa căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tien Tien

cho biểu thức Q = \(\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{7}{x-4}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-1\right)\) với x ≥ 0, x ≠ 4

a) Rút gọn Q

b) Tính giá trị của Q:

+ x = \(\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)         + x = \(\sqrt{\dfrac{2}{2-\sqrt{3}}}-\sqrt{\dfrac{2}{2+\sqrt{3}}}\)

Shinee┊NQ
16 tháng 8 2022 lúc 16:39

`a.`\(Q=\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{7}{x-4}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-1\right)\);\(x\ge0;x\ne4\)

\(Q=\left(\dfrac{\sqrt{x}-2+7}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right):\left(\dfrac{\sqrt{x}-1-\sqrt{x}+2}{\sqrt{x}-2}\right)\)

\(Q=\dfrac{\sqrt{x}+5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}.\left(\sqrt{x}-2\right)\)

\(Q=\dfrac{\sqrt{x}+5}{\sqrt{x}+2}\)

`b.`

`@`\(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)

\(x=\sqrt{\left(5+\sqrt{2}\right)^2}-\sqrt{\left(4+\sqrt{2}\right)^2}\)

\(x=\left|5+\sqrt{2}\right|-\left|4+\sqrt{2}\right|\)

\(x=5+\sqrt{2}-4-\sqrt{2}\)

\(x=1\) thế vào `Q`

\(Q=\dfrac{\sqrt{1}+5}{\sqrt{1}+2}=\dfrac{6}{3}=2\)

`@`\(x=\sqrt{\dfrac{2}{2-\sqrt{3}}}-\sqrt{\dfrac{2}{2+\sqrt{3}}}\)

\(x=\dfrac{2}{\sqrt{4-2\sqrt{3}}}-\dfrac{2}{\sqrt{4+2\sqrt{3}}}\)

\(x=\dfrac{2}{\sqrt{\left(\sqrt{3}-1\right)^2}}-\dfrac{2}{\sqrt{\left(\sqrt{3}+1\right)^2}}\)

\(x=\dfrac{2}{\left|\sqrt{3}-1\right|}-\dfrac{2}{\left|\sqrt{3}+1\right|}\)

\(x=\dfrac{2}{\sqrt{3}-1}-\dfrac{2}{\sqrt{3}+1}\)

\(x=\dfrac{2\sqrt{3}+2-2\sqrt{3}+2}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)

\(x=\dfrac{4}{2}=2\) thế vào `Q`

\(Q=\dfrac{\sqrt{2}+5}{\sqrt{2}+2}=\dfrac{8-3\sqrt{2}}{2}\)

 

Nguyễn Việt Lâm
16 tháng 8 2022 lúc 16:43

\(Q=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{7}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right):\left(\dfrac{\sqrt{x}-1-\sqrt{x}+2}{\sqrt{x}-2}\right)\)

\(=\left(\dfrac{\sqrt{x}+5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{1}{\sqrt{x}-2}\right)\)

\(=\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}+5}{\sqrt{x}+2}\)

b.

\(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}=\sqrt{\left(5+\sqrt{2}\right)^2}-\sqrt{\left(4+\sqrt{2}\right)^2}\)

\(=5+\sqrt{2}-\left(4+\sqrt{2}\right)=1\)

\(\Rightarrow Q=\dfrac{1+5}{1+2}=2\)

\(x=\sqrt{\dfrac{2}{2-\sqrt{3}}}-\sqrt{\dfrac{2}{2+\sqrt{3}}}=\dfrac{2}{\sqrt{4-2\sqrt{3}}}-\dfrac{2}{\sqrt{4+2\sqrt{3}}}=\dfrac{2}{\sqrt{\left(\sqrt{3}-1\right)^2}}-\dfrac{2}{\sqrt{\left(\sqrt{3}+1\right)^2}}\)

\(=\dfrac{2}{\sqrt{3}-1}-\dfrac{2}{\sqrt{3}+1}=\dfrac{2\left(\sqrt{3}+1-\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=\dfrac{2.2}{2}=2\)

\(\Rightarrow Q=\dfrac{\sqrt{2}+5}{\sqrt{2}+2}=\dfrac{8-3\sqrt{2}}{2}\)

Tô Mì
16 tháng 8 2022 lúc 16:48

a. \(Q=\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{7}{x-4}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-1\right)\)

\(=\dfrac{\sqrt{x}-2+7}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{\sqrt{x}-1-\sqrt{x}+2}{\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}+5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{1}{\sqrt{x}-2}\)

\(=\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+5}{\sqrt{x}+2}\)

Vậy : \(Q=\dfrac{\sqrt{x}+5}{\sqrt{x}+2}\)

 

b1. Ta có : \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)

\(=\sqrt{\left(\sqrt{2}+5\right)^2}-\sqrt{\left(\sqrt{2}+4\right)^2}\)

\(=\left|\sqrt{2}+5\right|-\left|\sqrt{2}+4\right|=1\left(tmđk\right)\)

Thay giá trị x trên vào Q \(\Rightarrow Q=\dfrac{\sqrt{1}+5}{\sqrt{1}+2}=2\)

Vậy : Với \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\) thì Q = 2.

b2. 

Ta có : \(x=\sqrt{\dfrac{2}{2-\sqrt{3}}}-\sqrt{\dfrac{2}{2+\sqrt{3}}}\)

\(=\dfrac{\sqrt{2\left(2+\sqrt{3}\right)}}{\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}-\dfrac{\sqrt{2\left(2-\sqrt{3}\right)}}{\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}\)

\(=\dfrac{\sqrt{4+2\sqrt{3}}}{\sqrt{2^2-\left(\sqrt{3}\right)^2}}-\dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{2^2-\left(\sqrt{3}\right)^2}}\)

\(=\dfrac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{1}}-\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{1}}\)

\(=\left|\sqrt{3}+1\right|-\left|\sqrt{3}-1\right|=2\left(tmđk\right)\)

Thay giá trị x trên vào Q \(\Rightarrow Q=\dfrac{\sqrt{2}+5}{\sqrt{2}+2}=\dfrac{8-3\sqrt{2}}{2}\)

Vậy : Với \(x=\sqrt{\dfrac{2}{2-\sqrt{3}}}-\sqrt{\dfrac{2}{2+\sqrt{3}}}\) thì \(Q=\dfrac{8-3\sqrt{2}}{2}\)