Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyen ngoc son

cho biểu thức P=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{4}{x+2\sqrt{x}}\right):\left(1+\dfrac{1}{\sqrt{x}}\right)\) với x>0

1.rút gọn biểu thức P

2.tìm các soosnguyeen x thả mãn P>0

Nguyễn Hoàng Minh
8 tháng 8 2021 lúc 9:38

1. \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{4}{x+2\sqrt{x}}\right):\left(1+\dfrac{1}{\sqrt{x}}\right)\left(x>0\right)\)

\(P=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}+2\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(P=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

2. Để \(P>0\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}-2>0\\\sqrt{x}+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}-2< 0\\\sqrt{x}+1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\sqrt{2}\\x>\sqrt{-1}\left(L\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x< \sqrt{2}\\x< \sqrt{-1}\left(L\right)\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x>\sqrt{2}\\x< \sqrt{2}\end{matrix}\right.\)

Vậy \(P>0\Leftrightarrow\left[{}\begin{matrix}x>\sqrt{2}\\x< \sqrt{2}\end{matrix}\right.\)

 


Các câu hỏi tương tự
nguyen ngoc son
Xem chi tiết
nguyen ngoc son
Xem chi tiết
nguyen ngoc son
Xem chi tiết
nguyen ngoc son
Xem chi tiết
nguyen ngoc son
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Anh Quynh
Xem chi tiết
Ly Ly
Xem chi tiết
Quynh Existn
Xem chi tiết