a: \(P=\left(\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\dfrac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right)\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)
\(=\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}\left(\sqrt{a}-1\right)}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
b: Để P là số nguyên thì \(\sqrt{a}-1⋮\sqrt{a}\)
hay \(a\in\varnothing\)