\(ĐKXĐ:x\ne0;x\ne\pm1\)
\(P=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}+\frac{1}{x-1}+\frac{2-x^2}{x^2-x}\right)\)
\(P=\frac{x^2+x}{x^2-2x+1}:\left[\frac{\left(x+1\right)\left(x-1\right)+x+2-x^2}{x\left(x-1\right)}\right]\)
\(P=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x^2-1+x+2-x^2}{x^2-x}\right)=\frac{x^2+x}{x^2-2x+1}:\frac{x+1}{x^2-x}\)
\(=\frac{x^2+x}{x^2-2x+1}.\frac{x^2-x}{x+1}=\frac{x^2\left(x^2-1\right)}{\left(x^2-1\right)\left(x-1\right)}=\frac{x^2}{x-1}\)
Khi \(x>1\) thì \(x-1>0\)
\(P=\frac{x^2}{x-1}=\frac{x^2-4x+4+4x-4}{x-1}=\frac{\left(x-2\right)^2}{x-1}+4\ge4\)
\("="\Leftrightarrow x=2\)