Cho biểu thức A= \(\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
P = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
a, Rút gọn biểu thức A
b, Tìm các giá trị để \(\dfrac{P}{A}\left(x-1\right)=0\)
rút gọn biểu thức A=\(\dfrac{\left(2-\sqrt{a}\right)-\left(\sqrt{a+3}\right)}{1+2\sqrt{a}}\) (với a>0) ; B=\(\dfrac{1}{1-\sqrt{2}+\sqrt{3}}-\dfrac{1}{1-\sqrt{2-\sqrt{3}}}\); C=\(\dfrac{1}{\sqrt{5-2}}+\dfrac{1}{\sqrt{5+\sqrt{2}}}\)
Cho biểu thức A:
\(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+1+\sqrt{x}}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2\sqrt{x}}\)
a) Rút gọn A.
b) cmr: \(A< \dfrac{2}{3}\)
Cho biểu thức N = \(\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right)\dfrac{4\sqrt{x}}{3}\)\
a) Rút gọn biểu thức N
b) Tìm x để N = \(\dfrac{8}{9}\)
1. cho biểu thức
M=\(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
a, rút gọn M
b, Tìm giá trị của a để M>-\(\dfrac{1}{2}\)
Rút gọn biểu thức:
\(\dfrac{\sqrt{a-2}+2}{3}\left(\dfrac{\sqrt{a-2}}{3+\sqrt{a-2}}+\dfrac{a+7}{11-a}\right):\left(\dfrac{3\sqrt{a-2}+1}{a-3\sqrt{a-2}-2}-\dfrac{1}{\sqrt{a-2}}\right)\)
Cho biểu thức:
\(A=\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(\dfrac{x-2}{x-\sqrt{x}-2}-1\right)\)
a) Rút gọn A.
b) Tìm x để P=2A - \(\dfrac{1}{x}\)đạt GTLN.
Rút gọn biểu thức :
a) \(\dfrac{a+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\) ( a > 0 , b > 0 )
b) \(\dfrac{1-8a\sqrt{a}}{1-2\sqrt{a}}\) ( a ≥ 0 , a ≠ \(\dfrac{1}{4}\) )
c) \(\dfrac{1-a}{1+\sqrt{a}}\) ( a ≥ 0 )
d) \(\dfrac{a-3\sqrt{a}}{\sqrt{a}-3}\) ( a ≥ 0 , a ≠ 9 )
Cho biểu thức:
A=\(\dfrac{\sqrt{x}+1}{x+4\sqrt{x}+4}:\left(\dfrac{x}{x+2\sqrt{x}}+\dfrac{x}{\sqrt{x}+2}\right)\)với x>0
a/ Rút gọn biểu thức A
b/ Tìm tất cả các giá trị x để A≥\(\dfrac{1}{3\sqrt{x}}\)