Bài 1 :
a, \(\sqrt{45}-2\sqrt{\frac{4}{3}}+\frac{\sqrt{18}}{\sqrt{6}}-\sqrt{5\frac{1}{3}}\)
b, (\(\sqrt{7}-\sqrt{3}\) )2 +\(\sqrt{84}\)
Bài 2 : Chứng minh đẳng thức
\(\left(\frac{\sqrt{21}-\sqrt{7}}{\sqrt{3}-1}\frac{\sqrt{15}+\sqrt{3}}{\sqrt{5}+1}\right):\frac{1}{\sqrt{7}+\sqrt{3}}=4\)
Bài 3: Cho biểu thức : A=\(\left(1-\frac{2\sqrt{2a}}{a+2}\right):\left(\frac{1}{\left(\sqrt{a}+2\right)}-\frac{2\sqrt{2a}}{\left(a+2\right)\left(\sqrt{a}+2\right)}\right)\)
a. Rút gọn A
b. Tính A khi a =2009-2\(\sqrt{2008}\)
Bài 4 : Cho A =\(\left(1-\frac{4}{\sqrt{x}+1}+\frac{1}{x-1}\right):\frac{x-2\sqrt{x}}{x-1}\) điều kiện x>0 , x≠1,x≠4
a.Rút gọn
b. Tìm x để A =\(\frac{1}{2}\)
cho biểu thức A= \(\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\) với a > 0
a) rút gọn biểu thức
b) tính giá trị nhỏ nhất của A.
cho biểu thức P= \(\left(\frac{a\sqrt{a}+1}{a-1}-\frac{a-1}{\sqrt{a}-1}\right):\left(\sqrt{a}-\frac{\sqrt{a}}{\sqrt{a}-1}\right)\) với a > 0; a khác 1
a) rút gọn biểu thức
b) tính giá trị của P khi a = 3-2\(\sqrt{2}\)
Rút gọn biểu thức:
a) A = \(\frac{\sqrt{5-2\sqrt{6}}+\sqrt{8-2\sqrt{15}}}{\sqrt{7+2\sqrt{10}}}\)
b) B = \(\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\) a>0 va a # 1
c) C = \(\frac{a\sqrt{a}-8+2a-4\sqrt{a}}{a-4}\)
d) D = \(\frac{1}{2a-1}.\sqrt{5a^4.\left(-4a+4a^2\right)}\)
e) E = \(\frac{2}{x^2-y^2}.\sqrt{\frac{3x^2+6xy+3y^2}{4}}\)
Cho A = \(1+\left(\frac{2a+\sqrt{a}-1}{1-a}-\frac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right).\left(\frac{a-\sqrt{a}}{2\sqrt{a}-1}\right)\) Rút gọn A
B1 Cho biểu thức A=\(\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{x-3}{x+2\sqrt{x}+4}-\frac{\sqrt{x}+7}{x\sqrt{x}-8}\right):\left(\frac{\sqrt{x}+7}{x+2\sqrt{x}+4}\right)\)
1, Rút gọn A. Tìm x sao cho A<2
2, Cho 1≤a,b,c≤2. Chứng minh rằng \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le10\)
rút gọn biểu thức
a) \(5\sqrt{\frac{1}{5}}+\frac{1}{3}\sqrt{45}+\sqrt{\left(2-\sqrt{5}\right)^2}\)
b) \(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\)
cho biểu thức
A= \(\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right).\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\) với x>0; x khác 0
a) rút gọn biểu thức A
b) tính giá trị của x khi A > \(\frac{1}{6}\)
Bài 1 : Đơn giản biểu thức A = \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
Bài 2 : Cho P = \(a-\left(\frac{1}{\sqrt{a}-\sqrt{a-1}}-\frac{1}{\sqrt{a}+\sqrt{a-1}}\right)\)
a, Rút gọn P
b, Chứng minh \(P\ge0\)
1,Cho biểu thức P =\(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\)
a, Rút gọn P
b,Tìm a để P< 7-4\(\sqrt{3}\)
2,Cho biểu thức A=\(\left(\frac{1}{a-\sqrt{a}}+\frac{1}{a-\sqrt{a}}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\) với a>0 và a\(\ne\)1
a, Rút gọn biểu thức A
b,So sánh giá trị của A với 1
Bài 1. Cho A=\(\left(\frac{1}{\sqrt{a}-3}+\frac{1}{\sqrt{a}+3}\right)\left(1-\frac{3}{\sqrt{a}}\right)\)
a, Rút gọn biểu thức A
b,Xác định a để biểu thức A >\(\frac{1}{2}\)
Bài 2.Cho B=\(\left(\frac{\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}+\frac{3}{\sqrt{x}-2}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}}-\frac{\sqrt{x}}{\sqrt{x}-2}\right)\) với x > 0, x \(\ne\)4
a,Rút gọn A
b,Tính A với x=6-\(2\sqrt{5}\)