Cho biểu thức
\(\left(\frac{x\sqrt{x}+x+\sqrt{x}}{x\sqrt{x}-1}-\frac{\sqrt{x}+3}{1-\sqrt{x}}\right)\cdot\frac{x-1}{2x+\sqrt{x}-1}\)
A Rút gọn B
B Tìm x để B<0
Cho \(x=\frac{2}{\frac{1}{\sqrt{\sqrt{2}+1}-1}-\frac{1}{\sqrt{\sqrt{2}+1}+1}}\)
Tính giá trị biểu thức \(B=\left(x^4-x^3-x^2+2x-1\right)^{2011}\)
Cho biểu thức P=\(\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)
a, Rút gọn P.
b,Tính \(\sqrt{P}\) khi x=5 +2\(\sqrt{3}\)
1, \(\left(\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{x+1}}\right)^2.\frac{x^2-1}{2}-\sqrt{1-x^2}\)
a,Tìm đk của x để A có nghĩa.
b,Rút gọn A.
c,Tìm x khi A=-2
Rút gọn B
\(B=\frac{2\left(x+4\right)}{x-3\sqrt{x}-4}+\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{8}{\sqrt{x}-4}\)
\(P=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{2}}{\sqrt{x}-2}+\frac{2+5\sqrt{x}}{4-x}\)
a, nêu đk để xác định và rút gọn biểu thức P
b, tính giá trị của P khi x=\(\frac{1}{4}\)
c, tìm x để P < 2
Giải hệ pt:
a)\(\left\{{}\begin{matrix}x^2+y^2+x+y=18\\x\left(x+1\right).y\left(y+1\right)=72\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\3y-1=xy\end{matrix}\right.\) c)\(\left\{{}\begin{matrix}2x+3y=xy+5\\\frac{1}{x}+\frac{1}{y+1}=1\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\sqrt{\frac{x}{y}}-3\sqrt{\frac{y}{x}}=2\\x-y+xy=1\end{matrix}\right.\) e)\(\left\{{}\begin{matrix}xy+x+y=x^2-2y^2\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{matrix}\right.\)
HELP ME :((
CHUYÊN ĐỀ PHƯƠNG TRÌNH - HỆ PHƯƠNG TRÌNH CHỌN LỌC
Bài 1: Giải phương trình ẩn x sau :
a) \(\sqrt{\frac{1}{x+3}}+\sqrt{\frac{5}{x+4}}=4\)
b) \(\sqrt[8]{1-x}+\sqrt[3]{1+x}+\sqrt[8]{1-x^2}=3\)
Bài 2: Giải hệ phương trình :
a) \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\frac{x^2+4y^2}{2}}+\sqrt{\frac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\frac{y}{2x+1}=\frac{\sqrt{2x+1}+1}{\sqrt{y}+1}\\4x^2+5=y^2\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x^2-xy+y^2=3\\z^2+yz+1=0\end{matrix}\right.\)
P/s: ai có lời giải đúng, đẹp tặng 1GP mỗi phần.
Giải hệ phương trình:
1, \(\left\{{}\begin{matrix}x^2+1+y^2+xy=y\\x+y-2=\frac{y}{1+x^2}\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^3+8y^3-4xy^2=1\\2x^4+8y^4-2x-y=0\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}x^2+y^2=\frac{1}{5}\\4x^2+3x-\frac{57}{25}=-y\left(3x+1\right)\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}\sqrt{12-y}+\sqrt{y\left(12-x\right)}=12\\x^3-8x-1=2\sqrt{y-2}\end{matrix}\right.\)
5, \(\left\{{}\begin{matrix}\left(1-y\right)\sqrt{x-y}+x=2+\left(x-y-1\right)\sqrt{y}\\2y^2-3x+6y+1=2\sqrt{x-2y}-\sqrt{4x-5y-3}\end{matrix}\right.\)