a: \(H=\dfrac{\sqrt{x-1}+\sqrt{x}+\sqrt{x-1}-\sqrt{x}}{x-1-x}+x\)
\(=-2\sqrt{x-1}+x\)
b: \(x=\dfrac{53}{9-2\sqrt{7}}=9+2\sqrt{7}\)
Khi x=9+2 căn 7 thì \(H=-2\cdot\sqrt{8+2\sqrt{7}}+9+2\sqrt{7}\)
\(=-2\left(\sqrt{7}+1\right)+9+2\sqrt{7}\)
=-2+9=7
a: \(H=\dfrac{\sqrt{x-1}+\sqrt{x}+\sqrt{x-1}-\sqrt{x}}{x-1-x}+x\)
\(=-2\sqrt{x-1}+x\)
b: \(x=\dfrac{53}{9-2\sqrt{7}}=9+2\sqrt{7}\)
Khi x=9+2 căn 7 thì \(H=-2\cdot\sqrt{8+2\sqrt{7}}+9+2\sqrt{7}\)
\(=-2\left(\sqrt{7}+1\right)+9+2\sqrt{7}\)
=-2+9=7
Cho biểu thức: A =\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)và B=\(\dfrac{\sqrt{x}+3}{\sqrt{x}+1}-\dfrac{4}{1-\sqrt{x}}+\dfrac{5-x}{x-1}\)
a) Tìm điều kiện của x để A và B đều có nghĩa
b) Tính giá trị của A khi x = 9
c) Rút gọn biểu thức P = A.B
Cho biểu thức sau:
\(A=\left[\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}}{3-\sqrt{x}}-\dfrac{3x+3}{x-9}\right]:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
a) Rút gọn biểu thức A.
b) Tính giá trị của A khi \(x=\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
c) Tìm các giá trị nguyên của x để A có giá trị nguyên.
Cho biểu thức A=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}\)và B=\(\dfrac{3x}{x-2\sqrt{x}+1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\)với x>0,x\(\ne\)1
1.Tính giá trị biểu thức khi A=0,09
2.Rút gọn biểu thức B và M=B:A
3.Tìm giá trị x để biểu thức M<1
* Cho biểu thức
A= \(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right).\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\) với x > 0, x ≠ 1
a. Rút gọn biểu thức A
b. Tính giá trị của x khi A > \(\dfrac{1}{6}\)
\(A=\dfrac{\sqrt{X}-2}{\sqrt{X}-1};B=\dfrac{\sqrt{X}}{\sqrt{X}+1}-\dfrac{\sqrt{X}-4}{1-X}\left(X\ge1;X\ne1\right)\)
a) Tính giá trị của biểu thức A khi x = 25
b) Rút gọn biểu thức B
c) Tìm x để A: B <1/2
Cho các biểu thức \(A=\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\); \(B=\dfrac{\sqrt{x}}{x+\sqrt{x}}\); \(P=\dfrac{A}{B}\); \(x>0\)
a) Rút gọn biểu thức P và tính giá trị của P khi x = 4.
b) Tìm các giá trị của x để \(A\le3B\)
c) So sánh B với 1
d) Tìm x thỏa mãn: \(P\sqrt{x}+\left(2\sqrt{5}-1\right)\sqrt{x}=3x-2\sqrt{x-4}+3\)
e) Tìm giá trị nhỏ nhất của P.
f) Tìm các giá trị nguyên của x để P nhận giá trị là số nguyên.
* Cho biểu thức
A= \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right).\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right)\)( với x > 0,x ≠1)
a. Rút gọn biểu thức A
b. Tính giá trị của x khi A=\(\dfrac{1}{2}\)
Cho biểu thức:
A=\(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
a) Tìm ĐKXĐ và rút gọn A
b) Tính giá trị của A khi x=\(3-2\sqrt{2}\)
Cho biểu thức:
\(P=\dfrac{x-\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3};x\ge0,x\ne9\)
1) Rút gọn biểu thức P.
2) Tính giá trị của P trong các trường hợp sau:
a) \(x=\dfrac{9}{4}\)
b) \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
3) Tìm x để \(\dfrac{1}{P}>\dfrac{5}{4}\)