\(a.D=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1=a+\sqrt{a}-2\sqrt{a}-1+1=a-\sqrt{a}\left(a>0\right)\)
\(b.D=2\Leftrightarrow a-\sqrt{a}-2=0\Leftrightarrow\left(\sqrt{a}+1\right)\left(\sqrt{a}-2\right)=0\Leftrightarrow a=4\left(TM\right)\)
\(c.D=a-\sqrt{a}=\sqrt{a}\left(\sqrt{a}-1\right)>0\left(a>1\right)\)\(\Rightarrow D=\left|D\right|\)