cho hai biểu thức
A=\(\dfrac{\sqrt{x}}{\sqrt{x}+5}\) và B = \(\dfrac{2\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}-1}{\sqrt{x}+2}-\dfrac{2-5\sqrt{x}}{4-x}\) (\(x\ge0;x\ne4\))
a, tìm giá trị của A khi x = 25
b, rút gọn biểu thức B
c, tìm số tự nhiên x để \(\dfrac{B}{A}\le\dfrac{1}{3}\)
Cho hai biểu thức:
\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\); \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}\) với \(x\ge0,x\ne4,x\ne9\)
a) Tính giá trị của A khi \(x=\dfrac{1}{4}\)
b) Rút gọn B.
c) Tìm giá trị nguyên của x để B nhận giá trị là số tự nhiên.
B = (sqrt(x + 1))/(sqrt(x) + 2) A = (sqrt(x) - 3)/(sqrt(x) + 2) + (sqrt(x))/(sqrt(x) - 2) - (6 + sqrt(x))/(x - 4) và với x>0, x ne4 a) Tính giá trị của biểu thức B tại x = 9 b) Rút gọn biểu thức A . c) Cho P = A/R So sánh P với 2.
Cho biểu thức\(A=\left(\frac{\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}+2}+\frac{2}{2-\sqrt{x}}\right):\left(\sqrt{x}+\frac{6-x}{\sqrt{x}+2}-2\right)\) \(\left(x\ge0;x\ne4\right)\)
a. Rút gọn biểu thức A
b. Tìm điều kiện của x để A nhận giá trị âm
Cho các biểu thức \(A=\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\); \(B=\dfrac{\sqrt{x}}{x+\sqrt{x}}\); \(P=\dfrac{A}{B}\); \(x>0\)
a) Rút gọn biểu thức P và tính giá trị của P khi x = 4.
b) Tìm các giá trị của x để \(A\le3B\)
c) So sánh B với 1
d) Tìm x thỏa mãn: \(P\sqrt{x}+\left(2\sqrt{5}-1\right)\sqrt{x}=3x-2\sqrt{x-4}+3\)
e) Tìm giá trị nhỏ nhất của P.
f) Tìm các giá trị nguyên của x để P nhận giá trị là số nguyên.
Cho biểu thức: \(A=\left(\frac{4\sqrt{y}}{2+\sqrt{y}}+\frac{8y}{4-y}\right):\left(\frac{\sqrt{y}-1}{y-2\sqrt{y}}-\frac{2}{\sqrt{y}}\right)\), với y>0, \(y\ne4,\ne9\)
a) Rút gọn biểu thức A.
b) Tìm y để A=2.
Cho biểu thức : \(A=\frac{3\left(x+\sqrt{x}-3\right)}{x+\sqrt{x}-2}+\frac{\sqrt{x}+3}{\sqrt{x}+2}-\frac{\sqrt{x}-2}{\sqrt{x}-1}\) Với \(x\ge0,x\ne4\)
a) Rút gọn A
b) Tính giá trị của A khi \(x=3+2\sqrt{2}\)
* Giải phương trình
a. \(\sqrt{x^2-4x+4}=5\)
b. \(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)
* Cho biểu thức
A= \(\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\) với a>0
a. Rút gọn biểu thức A
b. Tính giá trị nhỏ nhất của A
Cho biểu thức: A =\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)và B=\(\dfrac{\sqrt{x}+3}{\sqrt{x}+1}-\dfrac{4}{1-\sqrt{x}}+\dfrac{5-x}{x-1}\)
a) Tìm điều kiện của x để A và B đều có nghĩa
b) Tính giá trị của A khi x = 9
c) Rút gọn biểu thức P = A.B