Có: \(P=A:B=\left(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\right):\left(1-\frac{2x}{x^2+1}\right)\left(ĐK:x\ne1\right)\)
\(=\left[\frac{1}{x-1}-\frac{2x}{x\left(x^2+1\right)-\left(x^2+1\right)}\right]:\left(\frac{x^2+1-2x}{x^2+1}\right)\)
\(=\left[\frac{1}{x-1}-\frac{2x}{\left(x^2+1\right)\left(x-1\right)}\right]:\frac{\left(x-1\right)^2}{x^2+1}\)
\(=\frac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}\cdot\frac{x^2+1}{\left(x-1\right)^2}\)
\(=\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x^2+1\right)}\cdot\frac{x^2+1}{\left(x-1\right)^2}=\frac{1}{x-1}\)
b) Để \(P>-\frac{1}{2}\)
\(\Leftrightarrow\)\(\frac{1}{x-1}>-\frac{1}{2}\)
\(\Leftrightarrow\)\(\frac{1}{x-1}+\frac{1}{2}>0\)
\(\Leftrightarrow\)\(\frac{2+x-1}{2\left(x-1\right)}>0\)
\(\Leftrightarrow\)\(\frac{x+1}{2\left(x-1\right)}>0\)
\(\Leftrightarrow\begin{cases}x+1>0\\2\left(x-1\right)>0\end{cases}\) hoặc \(\begin{cases}x+1< 0\\2\left(x-1\right)< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>-1\\x>1\end{cases}\) hoặc \(\begin{cases}x< -1\\x< 1\end{cases}\)
\(\Leftrightarrow x>1\) hoặc \(x< -1\)