\(B=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2016}}\)
\(\Rightarrow2B=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2015}}\)
\(\Rightarrow2B-B=\left(1+\dfrac{1}{2}+...+\dfrac{1}{2^{2015}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2016}}\right)\)
\(\Rightarrow B=1-\dfrac{1}{2^{2016}}< 1\)
\(\Rightarrow B< 1\left(đpcm\right)\)
Vậy...
B= \(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\)
\(\dfrac{2B=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2015}}}{2B-B=1-\dfrac{1}{2^{2016}}}\)
B= 1- \(\dfrac{1}{2^{2016}}\)<1
=> B<1
Vậy B<1
Ta có : B= 1/2+1/2^2+1/2^3+.....+1/2^2016
suy ra B= (1+1/2+1/2^2+....+1/2^2015)-(1/2+1/2^2+1/2^3+.....+1/2^2016)
B=1-1/2016
B=2015/2016 < 1
Suy ra: B < 1