Cho tam giác ABC, các đường cao AD,BE,CF. Gọi H là trực tam của tam giác.
a) Chứng minh A, E, H, F cùng nằm trên một đường tròn xác định tâm I.
b) Gọi O là trung điểm BC. Chứng minh OE là tiếp tuyến đường tròn tâm I.
Cho tam giác ABC, các đường cao AD, BE và CF. Gọi H là trực tâm của tam giác.
a) Chứng minh 4 điểm A,E,H,F cùng nằm trên 1 đường tròn xác định tâm I.
b) gọi O là trung điểm BC. Chứng minh OE là tiếp điểm của đường tròn (I).
Trên đường tròn (O;R) đường kính AB lấy điểm C . Trên tia AC lấy điểm M sao cho C là trung điểm của AM
a) Tam giác AMB là tam giác gì ?
b) Xác định vị trí của C để AM có độ dài lớn nhất
c) Xác định vị trí của C để AM = 2Rcăn 3
d) CMR khi C di chuyển (O) khi M di chuyển trên 1 đường tròn cố định
Cho tam giác đều ABC , cạnh a , H là trực tâm
a) Tâm của đường tròn ngoại tiếp tam giác ABC là điểm nào
b) Tính bán kính của đường tròn đó theo a
c) Gọi K là điểm đối xứng với H qua BC. Xác định vị trí tương đối của điểm K với đường tròn đó
Cho đường thẳng ( O,R) và dây cung BC cố định ( BC <2R). Điểm A di động trên đường tròn (O) sao cho tam giác ABC có 2 góc nhọn và AB<AC. Vẽ đường cao CD của tam giác ABC và đường kính AM. Hạ CE vuông góc AM tại E. Gọi H là trực tâm của tam giác ABC
1/ Chứng minh tứ giác ADEC nội tiếp
2/ Chứng minh góc ABH = góc DEA và DE.BC=DC.BM
Cho \(\Delta ABC\) nội tiếp đường tròn \(\left(O\right)\). Các đường cao \(AM,BE\) và \(CF\) cắt nhau tại \(H\). Gọi \(N\) là trung điểm của \(BC\).
a) CMR: \(ON=\dfrac{1}{2}AH\).
b) Cho \(BC\) cố định. Điểm \(A\) chuyển động trên cung lớn \(BC\). CMR:
Điểm \(H\) luôn chuyển động trên 1 đường tròn cố định.
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Ba đường cao BE; CF cắt nhau tại H
a) Chứng minh bốn điểm B;F;E;C cùng thuộc một đường tròn. Xác định tâm I của đường tròn ngoại tiếp
b)Vẽ đường kính AK của đường tròn (O).Chứng minh BHCK là hình bình hành suy ra H,I,K thẳng hàng
Cho đường tròn tâm (O;R) và một điểm A cố định trên đường tròn đó. Qua A vẽ tiếp tuyết xy. Từ một điểm M trên xy vẽ tiếp tuyến MB với đường tròn (O). Hai đường cao AD và BE của tam giác MAB cắt nhau tại H; MO cắt AB tại K. Khi điểm M di động trên xy thì điểm H di động trên đường nào
Cho tam giác ABC có ba góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Ba đường cao AD ; BE; CF cắt nhau tại H
a) Chứng minh bốn điểm B;E;F;C cùng thuộc một đường tròn. Xác định tâm I của đường tròn này
b)Vẽ đường kính AK của đường tròn (O).Chứng minh BHCK là hình bình hành suy ra H,I,K thẳng hàng