áp dụng tính chất dảy tỉ số bằng nhau ta có :
\(\dfrac{2016c-a-b+2016b-a-c+2016a-b-c}{c+b+a}\)
\(=\dfrac{2014c+2014b+2014a}{c+b+a}=\dfrac{2014\left(c+a+b\right)}{c+a+b}=2014\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2016c-a-b}{c}=2014\\\dfrac{2016b-a-c}{b}=2014\\\dfrac{2016a-b-c}{a}=2014\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2016c-a-b=2014c\\2016b-a-c=2014b\\2016a-b-c=2014a\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2016c-a-b-2014c=0\\2016b-a-c-2014b=0\\2016a-b-c-2014a=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2c-a-b=0\\2b-a-c=0\\2a-b-c=0\end{matrix}\right.\)bấm máy tính ta có phương trình vô nghiệm nên A không xát định
\(L=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Với \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\)
Khi đó \(L=\dfrac{-abc}{abc}=-1\)
Với \(a+b+c\ne0\) áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2016c-a-b}{c}=\dfrac{2016b-a-c}{b}=\dfrac{2016a-b-c}{a}=\dfrac{2016c-a-b+2016b-a-c+2016c-b-c}{a+b+c}=\dfrac{\left(2016c-c-c\right)+\left(2016b-b-b\right)+\left(2016c-c-c\right)}{a+b+c}=\dfrac{2014\left(a+b+c\right)}{a+b+c}=2014\)\(\Rightarrow\left\{{}\begin{matrix}2016c-a-b=2014c\\2016b-a-c=2014b\\2016a-b-c=2014a\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2016c-a-b-2014c=0\\2016b-a-c=2014b=0\\2016a-b-c-2014a=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2c-a-b=0\\2b-a-c=0\\2a-b-c=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b=2c\\a+c=2b\\b+c=2a\end{matrix}\right.\)
Khi đó \(L=\dfrac{8abc}{abc}=8\)