Cho tam giác ABC và một điểm M tùy ý. Chứng minh rằng vectơ \(\overrightarrow{v}=\overrightarrow{MA}+\overrightarrow{MB}-2\overrightarrow{MC}\) không phụ thuộc vào vị trí của điểm M. Hãy xác định điểm D sao cho \(\overrightarrow{CD}=\overrightarrow{v}\) ?
Cho tam giác ABC. Tìm điểm M thỏa mãn điều kiện \(\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\) ?
Cho hai điểm A và B. Điểm M thỏa mãn điều kiện \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MA}-\overrightarrow{MB}\right|\)
Chứng minh rằng \(OM=\dfrac{1}{2}AB\), trong đó O là trung điểm của AB ?
Cho ba lực \(\overrightarrow{F_1}=\overrightarrow{MA};\overrightarrow{F_2}=\overrightarrow{MB};\overrightarrow{F_3}=\overrightarrow{MC}\) cùng tác động vào một vật tại điểm M và vật đứng yên. Cho biết cường độ của \(\overrightarrow{F_1};\overrightarrow{F_2}\) đều là 100N và \(\widehat{AMB}=60^0\)
a) Đặt \(\overrightarrow{ME}=\overrightarrow{MA}+\overrightarrow{MB}\). Tính độ dài của đoạn ME
b) Tìm cường độ và hướng của lực \(\overrightarrow{F_3}\)
Cho tam giác ABC. Gọi D là điểm xác định bởi : \(\overrightarrow{AD}=\dfrac{3}{4}\overrightarrow{AC}\). I là trung điểm của BD. M là điểm thỏa mãn \(\overrightarrow{BM}=x\overrightarrow{BC},\left(x\in R\right)\)
a) Tính \(\overrightarrow{AI}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
b) Tính \(\overrightarrow{AM}\) theo \(x,\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
c) Tính \(x\) sao cho A, I, M thẳng hàng
Trong mặt phẳng Oxy, 3 điểm A(-1;2), B(2;-3), C(3;4) không thẳng hàng. Tìm tọa độ điểm N sao cho |\(\overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{MC}\)| đạt GTNN
Trong mặt phẳng (P) cho tam giác ABC. M là một điểm bất kì thuộc mặt phẳng (P). Chứng minh rằng biểu thức \(\overrightarrow{u}=3\overrightarrow{MA}-5\overrightarrow{MB}+2\overrightarrow{MC}\) không phụ thuộc vào vị trí của điểm M ?
Cho tam giác ABC, Tìm tập hợp diểm M sao cho:
a) \(\left|\overrightarrow{MA}+3\overrightarrow{MB}-2\overrightarrow{MC}\right|=\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|\)
b) \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=3\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)
cho tam giác ABC , M là điểm thỏa mãn\(\overrightarrow{|2MA}+\overrightarrow{MB|}=\overrightarrow{|4MB}-\overrightarrow{MC}|\)
Tìm tập hợp các điểm M