Giải:
Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Lại có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{8b^3}{8c^3}=\frac{125c^3}{125d^3}=\frac{a^3+8b^3+125c^3}{b^3+8b^3+125c^3}\) (1)
Ta thấy \(\frac{a^3}{b^3}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\) ( do \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) ) (2)
Từ (1) và (2) \(\Rightarrow\frac{a}{d}=\frac{a^3+8b^3+125c^3}{b^3+8c^3+125d^3}\left(=\frac{a^3}{b^3}\right)\left(đpcm\right)\)