Ta xét tử : 1+(1+2)+...+(1+2+...+98)
Ta thấy : Số 1 được đếm 99 lần
Số 2 được đếm 98 lần
....................................
Số 97 được đếm 2 lần
Số 98 được đếm 1 lần
=> Tử = 1.98+2.97+3.96+...+97.2+98.1=Mẫu số
=> B = 1
Ta xét tử : 1+(1+2)+...+(1+2+...+98)
Ta thấy : Số 1 được đếm 99 lần
Số 2 được đếm 98 lần
....................................
Số 97 được đếm 2 lần
Số 98 được đếm 1 lần
=> Tử = 1.98+2.97+3.96+...+97.2+98.1=Mẫu số
=> B = 1
Câu 10:Cho
Rút gọn ta được
=
TÍNH GIÁ TRỊ BIỂU THỨC:\(\left(1+\dfrac{2}{3}\right)\cdot\left(1+\dfrac{2}{4}\right)\cdot\left(1+\dfrac{2}{5}\right)\cdot...\cdot\left(1+\dfrac{2}{97}\right)\cdot\left(1+\dfrac{2}{98}\right)\)
Rút gọn phân số:
a) \(\dfrac{2929-101}{2.1149+404}\)
b) \(\dfrac{6.9-2.17}{63.3-119}\)
c) \(\dfrac{3.13-13.18}{15.40-80}\)
d) \(\dfrac{-1997-1996+1}{\left(-1995\right).\left(-1997\right)+1996}\)
e) \(\dfrac{2.3+4.6+14.21}{3.5+6.10+21.35}\)
g) \(\dfrac{\left(-5\right)^3.40.4^3}{135.\left(-3\right)^{14}.\left(-100\right)^0}\)
h) \(\dfrac{18.34+\left(-18\right).124}{-36.17+9.\left(52\right)}\)
j) \(\dfrac{9.11+32.9}{23.15+12.23}\)
k) \(\dfrac{12.13+24.26+36.39}{24.26+48.52+72.78}\)
ĐỀ : Tính
\(M=\dfrac{\left(1+\dfrac{2012}{1}\right)\left(1+\dfrac{2012}{1}\right)...\left(1+\dfrac{2012}{1000}\right)}{\left(1+\dfrac{1000}{1}\right)\left(1+\dfrac{1000}{2}\right)...\left(1+\dfrac{1000}{2012}\right)}\)
Mong mọi người giúp đỡ ❤ !
Tìm x :
a) \(\left|x+\dfrac{11}{17}\right|+\left|x+\dfrac{2}{17}\right|+\left|x+\dfrac{4}{17}\right|=4x\)
b) \(\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{6}\right|+\left|x+\dfrac{1}{12}\right|+\left|x+\dfrac{1}{20}\right|+..+\left|x+\dfrac{1}{110}\right|=11x\)
1: Tính B
\(B=1+\dfrac{1}{2}\cdot\left(1+2\right)+\dfrac{1}{3}\cdot\left(1+2+3\right)+\dfrac{1}{4}\cdot\left(1+2+3+4\right)+...+\dfrac{1}{100}\cdot\left(1+2+3+...+100\right)\)
\(Tìm\) \(x\)∈\(Z\)\(,\) \(biết\)\(:\)
\(a\)) \(\left(x-20\right)+\left(x-19\right)+\left(x-18\right)+...+99+100=100\)
\(b\)) \(213-x.\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}\right):\left(1-\dfrac{1}{2^{2020}}\right)=13\)
1. Rút gọn
a, \(\dfrac{15\left(-16\right)+12}{-17.15-3}\)
b, \(\dfrac{a^2-b^2}{\left(a^2+ab\right)\left(b^2-ab\right)}\)
2. Biết \(\dfrac{a}{b}=\dfrac{c}{d}\)
Chứng minh \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
1, so sánh A;B biết: A=\(\left(\dfrac{\left(3\cdot\dfrac{2}{15}+\dfrac{1}{5}\right):2\cdot\dfrac{1}{2}}{\left(5\cdot\dfrac{3}{7}-2\cdot\dfrac{1}{4}\right):\dfrac{443}{56}}\right);B=\dfrac{1,2:\left(1\cdot\dfrac{1}{5}.1\cdot\dfrac{1}{4}\right)}{0,32+\dfrac{2}{25}}\)