Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
DRACULA

Cho : \(A=\dfrac{x\left(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\right)}{\sqrt{x^2-8x+16}}\)

a) Rút gọn A

b) Tìm x để A đạt GTNN

c) Tìm các giá trị nguyên của x để A có giá trị nguyên

Mysterious Person
25 tháng 8 2018 lúc 20:11

a) điều kiện xác định : \(x>4\)

ta có :\(A=\dfrac{x\left(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\right)}{\sqrt{x^2-8x+16}}\)

\(\Leftrightarrow A=\dfrac{x\left(\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}\right)}{\sqrt{\left(x-4\right)^2}}\)

\(\Leftrightarrow\left[{}\begin{matrix}A=\dfrac{4x}{x-4}\left(x\ge8\right)\\A=\dfrac{2x}{\sqrt{x-4}}\left(4< x< 8\right)\end{matrix}\right.\)

b) th1 : \(A=\dfrac{4x}{x-4}=\dfrac{4x-16+16}{x-4}=4+\dfrac{16}{x-4}\le4+\dfrac{16}{4}\left(vìx\ge8\right)\)

\(\Rightarrow\) không có GTNN

th2: \(A=\dfrac{2x}{\sqrt{x-4}}\Leftrightarrow4x^2-Ax+4A\)

phương trình này luôn có nghiệm \(\Rightarrow\Delta\ge0\Leftrightarrow A^2-4.4.4A\ge0\)

\(\Leftrightarrow A^2-64A\ge0\Leftrightarrow\left[{}\begin{matrix}A\ge64\\A\le0\end{matrix}\right.\) \(\Rightarrow\) không có GTNN

c) th1 : \(A=\dfrac{4x}{x-4}=\dfrac{4x-16+16}{x-4}=4+\dfrac{16}{x-4}\)

\(\Rightarrow\left(x-4\right)\) thuộc ước của \(16\) \(\Rightarrow\left(x-4\right)\in\left\{\pm1;\pm2;\pm4;\pm8;\pm16\right\}\)

\(\Rightarrow\) ..... nhớ điều kiện nha bn

th2: \(A=\dfrac{2x}{\sqrt{x-4}}\Rightarrow A^2=\dfrac{4x^2}{x-4}=\dfrac{4x^2-16x+16x}{x-4}=4x+\dfrac{16x}{x-4}\)

\(\Rightarrow...\)\(4< x< 8\Rightarrow x\in\left\{5;6;7\right\}\) thôi nên thế vào đủ điều kiện là nhận .


Các câu hỏi tương tự
Han Sara
Xem chi tiết
Đặng Tuyết Đoan
Xem chi tiết
Chóii Changg
Xem chi tiết
nchdtt
Xem chi tiết
Mastered Ultra Instinct
Xem chi tiết
Lê Hương Giang
Xem chi tiết
nguyễn phương ngọc
Xem chi tiết
nguyễn phương ngọc
Xem chi tiết
Trang Nguyễn
Xem chi tiết