Ôn tập toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phan Thùy Dương

Cho \(A=\dfrac{1+7+7^2+7^3+...+7^{11}}{1+7+7^2+7^3+...+7^{10}}\) \(B=\dfrac{1+3+3^2+3^3+...+3^{11}}{1+3+3^2+3^3+...+3^{10}}\)

So sánh A và B

Đỗ Thanh Hải
15 tháng 5 2017 lúc 19:28

Ta có

A = \(\dfrac{1+7+7^2+7^3+...+7^{11}}{1+7+7^2+7^3+...+7^{10}}\)

Đặt C = 1 + 7 + 72 + 73+...+711

7C = 7 + 72 + 73 + ... + 711 + 712

=> 6C = 712 - 1

C = \(\dfrac{7^{12}-1}{6}\)

Đặt D = 1 + 7 + 72 + 73+...+710

7D = 7 + 72 + 73 + ... + 710 + 711

=> 6D = \(7^{11}-1\)

D = \(\dfrac{7^{11}-1}{6}\)

=> A = \(\dfrac{\dfrac{7^{12}-1}{6}}{\dfrac{7^{11}-1}{6}}\)

A = \(\dfrac{7^{12}-1}{6}\) : \(\dfrac{7^{11}-1}{6}\)

A = \(\dfrac{7^{12}-1}{6}.\dfrac{6}{7^{11}-1}\)

A = \(\dfrac{7^{12}-1}{7^{11}-1}\) = 7, 000000003

Lại có:

B = \(\dfrac{1+3+3^2+3^3+...+3^{11}}{1+3+3^2+3^3+...+3^{10}}\)\

Đặt H = \(1+3+3^2+3^3+...+3^{11}\)

3H = \(3+3^2+3^3+...+3^{12}\)

=> 2H = \(3^{12}-1\)

H = \(\dfrac{3^{12}-1}{2}\)

Đặt Q = \(1+3+3^2+3^3+...+3^{10}\)

3Q = \(3+3^2+3^3+...+3^{10}+3^{11}\)

=> 2Q = \(3^{11}-1\)

Q = \(\dfrac{3^{11}-1}{2}\)

=> B = \(\dfrac{\dfrac{3^{12}-1}{2}}{\dfrac{3^{11}-1}{2}}\)

B = \(\dfrac{3^{12}-1}{2}:\dfrac{3^{11}-1}{2}\)

B = \(\dfrac{3^{12}-1}{2}.\dfrac{2}{3^{11}-1}\)

B = \(\dfrac{3^{12}-1}{3^{11}-1}\)

B = 3, 00001129

Vì 7, 000000003 > 3, 00001129

=> A > B

Vậy A > B


Các câu hỏi tương tự
Kfkfj
Xem chi tiết
Nkok_ Nhỏ_Dễ_Thươg
Xem chi tiết
no no
Xem chi tiết
dangthuylinh
Xem chi tiết
Kfkfj
Xem chi tiết
Lê Quang Dũng
Xem chi tiết
ngô trọng tấn
Xem chi tiết
lê bảo ngọc
Xem chi tiết
Nguyễn Thư Thư
Xem chi tiết