Cho 3 số a, b, c thỏa mãn: \(0< a\le b\le c\)
CMR: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\)
Cho a,b,c khác 0 thỏa mãn \(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)=8\)
CMR \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}=\dfrac{3}{4}+\dfrac{ab}{\left(a+b\right)\left(b+c\right)}+\dfrac{bc}{\left(b+c\right)\left(c+a\right)}+\dfrac{ca}{\left(c+a\right)\left(a+b\right)}\)
CMR với a, b, c > 0 thì
a) \(\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{a}\)
b) \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\)
c) \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\)
CMR với a, b, c > 0 thì :
a) \(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\ge a+b+c\)
b)\(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\le\dfrac{a+b+c}{2}\)
Cho 3 số thực a, b, c đôi một khác nhau thỏa mãn: \(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}=0\)
CMR: \(\dfrac{a}{\left(b-c\right)^2}+\dfrac{b}{\left(c-a\right)^2}+\dfrac{c}{\left(a-b\right)^2}=0\)
Cho \(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{2}{c}=0\) với a,b >0 .
CMR \(\dfrac{a+c}{2a-c}+\dfrac{b+c}{2b-c}>4\)
Cho a,b,c là ba số khác nhau và a+b+c=0. Cmr:\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)
Cho a,b,c phb khác 0 và a+b+c=0. Tính:
\(C=\left(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}\right)\left(\dfrac{b-c}{a}+\dfrac{c-a}{b}+\dfrac{a-b}{c}\right)\)
Cho a, b, c > 0 .CMR: \(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ac}{a+c}\) ≤ \(\dfrac{1}{2}\left(a+b+c\right)\)