Bài 1: Cho a,b,c \(\ge\)0. CMR: \(\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\ge6\)
Bài 2: Cho a,b,c \(\ge\)0. CMR: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
(4)Bài 1:Với \(\forall\) a>b>0. CMR: a+ \(\frac{1}{b\left(a-b\right)}\ge3\)
(7) Bài 2: Cho a,b,c \(\ne\) 0 .CMR: \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)
(8) Bài 3: Cho a,b,c>0 thõa mãn abc=1
CMR: \(\frac{b+c}{\sqrt{a}}+\frac{c+a}{\sqrt{b}}+\frac{a+b}{\sqrt{c}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)
Cho a, b, c>0 và a+b+c=abc. CMR: \(\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}+3\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+\sqrt{3}\)
cho a, b, c >0. cmr: \(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\ge\frac{9}{a+b+c}\)
Cho a,b,c > 0.CMR:
a, \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
b, \(2\left(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\right)\ge1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)
Cho a,b,c > 0 . CMR : \(2\left(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\right)\)≥\(1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)
Cho a,b,c > 0. cmr:
\(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Cho a,b,c > 0 và abc=1. CMR: \(a+b+c\ge\frac{1+a}{1+b}+\frac{1+b}{1+c}+\frac{1+c}{1+a}\)
cho \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=abc\end{matrix}\right.\).CMR: \(\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}+3\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+\sqrt{3}\)