a) Xét tam giác ABC vuông tại A
\(AB^2+AC^2=BC^2\)
Thay số : \(AB^2=5^2-4^2=9\Rightarrow AB=3cm\)
b) Xét tam giác ABE và tam giác DBE có
\(\widehat{ABE}=\widehat{DBE}\left(gt\right)\)
\(\widehat{BAE}=\widehat{BDE}=90^o\)
BE chung
=> tam giác ABE = tam giác DBE (ch-gn)
c) Xét tam giác BMC có 2 đường cao CA và MD cắt nhau tại E
=> BE là đường cao thứ 3 của tam giác BMC
mà BE là phân giác của góc \(\widehat{ABC}\) hay \(\widehat{MBC}\)
=> tam giác BMC cân tại B (ĐPCM)
Câu C còn cách giả khác như sau
tam giác ABE = tam giác DBE (cmt)
=> AE = DE
Tam giác AME và DEC có
\(\widehat{MAE}=\widehat{CDE}=90^o\)
AE = DE
\(\widehat{AEM}=\widehat{DEC}\) (đối đỉnh)
=> tam giác AEM = tam giác DEC (g.c.g)
=> AM = DC
Có BA = BD (tam giác AEB = tam giác DEB)
AM = DC
=> BA + AM = BD + DC => BM = BC => tam giác BMC cân
À mà mình lớp 10 nha