Cho hình thang ABCD có AB song song CD (AB<CD) và M là trung điểm của AD. Qua M vẽ đường thẳng song song với 2 đáy của hình thang cắt cạnh bên BC tại N và cắt 2 đường chéo BD và AC lần lượt tại E, F.
a) CM: N, E, F lần lượt là trung điểm của BC, BD, AC
b) Gọi I là trung điểm của AB. Đường thẳng vuông góc với IE tại E và đường thẳng vuông góc với IF tại F cắt nhau ở K. CM: KC=KD
Chủ đề: Học toán lớp 7
Cho △ ABC . Trên cạnh BC lấy D sao cho \(\frac{DB}{DC}=\frac{1}{2}\). Đường thẳng qua D song song với AB cắt AC tại E , đường thẳng qua D song song với AC cắt AB tại F .
a) So sánh \(\frac{AF}{AB}và\frac{AE}{AC}\)
b) Gọi M là trung điểm của AC . Chứng minh EF // BM
2. Cho ΔABC có AM là đường trung tuyến. N là điểm trên đoạn thẳng AM. Gọi D là giao điểm của CN và AB, E là giao điểm của BN và AC. C/m AD/BD= AE/CE
3. Cho hình bình hành ABCD, gọi M là một điểm trên đường chéo AC. Vẽ ME⊥AB, MF⊥AD. C/m ME/MF= AD/AB.
4. Cho ΔABC, AM là đường trung tuyến, AD là đường phân giác. Đường thẳng qua M song song với AD và cắt AB tại E và AC tại F. C/m:
a) ΔAEF cân
b) AC- AB= 2AE
Cho tam giác ABC vuông ở A . Vẽ đường cao AH . Trung tuyến AM . Kẻ đường phân giác góc A cắt đường trung trực cạnh BC tại D . Từ D kẻ DE vuông góc với AB tại D , DF vuông góc với AC tại F
a) CM : AD là phân giác góc HAM
b) CM : 3 điểm E , M , F thẳng hàng
c) CM : Tam giác BDC vuông cân
Cho tam giác ABC vuông cân tại A. Trên cạnh AC lấy M bất kì (M khác A,C) . Trên cạnh AB lấy E sao cho AE=CM. Gọi O là trung điểm cạnh BC
a, CM tam giác OEM vuông cân
b, Đường thẳng qua A và song song với ME, cắt tia BM tại N. Chứng minh CN _|_ AC
c, Gọi H là giao điểm của OM và AN. Chứng minh rằng tích AH.AN không phụ thuộc vào vị trí M trên cạnh AC
Cho hình thang ABCD có đáy AB<CD và O là giao điểm hai đường chéo . Từ trung điểm M của AB kẻ đường thảng MO cắt CD tại N
a) CM: N là trung điểm của CD
b) Kéo dài CD và BC cắt nhau tại I . Cm: I,M,N,O thẳng hàng
c) Qua O kẻ đường thẳng d song song với AB và CD ,cắt AD và BC lần lượt tại B và F
CM: O là trung điểm của EF
Cho tam giác ABC và điểm M nằm trong tam giác. AM, BM, CM lần lượt cắt BC,AC,AB tại I,J,K. Đường thẳng qua M và song song với BC cắt IK, IJ lần lượt ở E, F. CMR: ME = MF
HELP ME!!
.Qua một điểm M tùy ý đãcho trên đáy lớn AB của hình thang ABCD ta kẻ các đường thẳng song song với hai đường chéo AC và BD. Các đường thẳng song song này cắt hai cạnh BC và AD lần lượt tị E và F. Đoạn thẳng EF cắt AC và BD tại I và J tương ứng, a) Chứng minh rằng nếu H là trung điểm của đoạn IJ thì H cũng là trung điểm của đoạn EF
Cho △ABC vuông tại A (AB>AC) AM là đường trung tuyến . Kẻ đường thẳng vuông góc với AM tại M lần lược cắt AB tại E , cắt AC tại F a. Chứng minh △MBE ∼ △MFC b. Chứng minh AE . AB = AC . AF c. Đường cao AH của △ABC cắt EF tại I Chứng minh \(\dfrac{S_{ABC}}{S_{AEF}}=\left(\dfrac{AM}{AI}\right)^2\)