Cho tam giác ABC. Kẻ AH vuông góc với BC (H thuộc BC). Gọi D, E, F lần lượt là điểm nằm giữa của H và A, H và B, H và C. a) Chứng minh chu vi tam giác DEF < chu vi tam giác ABC. b) Tìm vị trí D, E, F để chu vi tam giác DEF = 1/2 chu vi tam giác ABC
Vẽ hình:
Bài 1: Cho tam giác ABC, AB < AC, H là hình chiếu của A trên BC. Lấy điểm D bất kì thuộc AH
Bài 2: Cho tam giác ABC nhọn, điểm D nằm giữa B và C sao cho AD không vuông góc với BC. Gọi H,K lần lượt là hình chiếu của B và C trên AD
Cho tam giác nhọn ABC, AB nhỏ hơn AC. Kẻ AH vuông góc BC, M là 1 điểm nằm giữa A và H, tia BM cắt AC ở D. CMR: a, BM bé hơn CM b, DM bé hơn DH
Cho △ AB, điểm D nằm giữa B và C. Gọi H, K lần lượt là chân các đường vuông góc kẻ từ D xuống các đường thẳng AB, AC. So sánh BC và tổng DH+DK
cho△ABC, \(\widehat{B}\)>\(\widehat{C}\) kẻ AH⊥BC (H\(\in\)BC) gọi D là điểm nằm giữa A và H. CM:
a, BH<HC
b, BD<DC
Cho tam giác ABC có AB khác AC. Lấy điểm M sao cho M nằm giữa B và C. Gọi E, F lần lượt là hình chiếu của B và C xuống AM. So sánh BE+CF với BC.
Cho tam giác ABC vuông cân tại A , điểm D nằm giữa B và C ( AD không vuông góc với BC ) . Gọi E và F là hình chiếu của B và C trên AD a) So sánh BC với BE + CF b) Tam giác ABE = tam giác CAF c)BE mũ 2 + CF mũ 2 = AB mũ 2 d) gọi m là trung điểm của BC , chứng minh tam giác MBE = tam giác MAF e ) Tam giác MEF vuông cân
5>Cho tam giác ABC, điểm P nằm giữa A và C Gọi E,F là chân đường vuông góc từ A và C đến BD.CM AC>AE+CE
6>Cho tam giác ABC nhọn, vẽ AD vuông BC, BE vuông AC CM AD+BE