Đấu đề bổ sung = 3 nhé
Đấu đề bổ sung = 3 nhé
cho ba số a,b,c là các số thực dương . chứng minh :\(\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ac}}+\frac{c}{\sqrt{c^2+8ab}}\ge1\)
Cho các số thực dương a+b+c\(\le3\) Tìm GTNN của biểu thức:\(M=\frac{a^2+6a+3}{a^2+a}+\frac{b^2+6b+3}{b^2+b}+\frac{c^2+6c+3}{c^2+c}\)
Cho các số thực dương a, b, c thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\). Tìm GTNN của biểu thức:
P=\(\frac{1}{\sqrt{a^2-ab+3b^2+1}}+\frac{1}{\sqrt{b^2-bc+3c^2+1}}+\frac{1}{\sqrt{c^2-ca+3a^2+1}}\)
Cho a b c là các số thực dương thỏa mãn \(\left\{{}\begin{matrix}a+b+c=5\\\sqrt{a}+\sqrt{b}+\sqrt{c}=3\end{matrix}\right.\)
CMR :\(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
cho a,b,c là các số dương thỏa mãn \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2019}\)
CMr: \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\sqrt{\frac{2019}{8}}\)
Cho 3 số thực dương a,b,c thỏa mãn \(a\sqrt{1-b^2}+b\sqrt{1-c^2}+c\sqrt{1-a^2}=\frac{3}{2}\).
CMR: \(a^{2^{ }}+b^2^{^{ }}+c^{2^{ }}=\frac{3}{2}\)
cho a,b,c > 0 thỏa mãn a + b + c = 1. Tìm GTNN của
\(P=\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}\)
1 . Cho các số thực a, b, c dương thỏa mãn
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\)
Tính giá trị lớn nhất của biể thức: \(P=\frac{1}{\sqrt{a^2-ab+3b^2+1}}+\frac{1}{\sqrt{b^2-bc+3c^2+1}}+\frac{1}{\sqrt{c^2-ac+3a^2+1}}\)
2 .
Cho các số thực dương a, b, c thỏa mãn: \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le1\)
Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}\)
Cho a, b, c dương thỏa \(a+b+c\le3\). Tìm max \(A=\frac{bc}{\sqrt{a^2+3}}+\frac{ca}{\sqrt{b^2+3}}+\frac{ab}{\sqrt{c^2+3}}\)