Cho hình bình hành ABCD. Dựng các tam giác đều ADE,DCF về phía ngoài hình bình hành. chứng minh BEF đều
tam giác abc. về phía ngoài của tam giác dựng tam giác đều ACE TRên nửa mặt phẳng bờ AB chứa C vẽ tam giác đều ABD H,I,K lần lượt là TĐ AB AE CD CMR HIK đều
Bài1: Cho tam giác ABC đều,điểm M nằm trong tam giác ABC,đường thẳng qua M song song với AC cắt BC tại D,đường thẳng qua M song song với BC cắt AB tại E,đường thẳng qua M song song với AB cắt AC tại F . Chứng minh :
a,c/m các tứ giác BEMD,AFME,DMFC là các hình thang cân
b,độ dài 3 cạnh của tam giác bằng độ dài 3 cạnh của tam giác nào
Cho tam giác ABC có E,F,D lần lượt là trung điểm AB, BC và CA. Chứng minh: a) tứ giác BFED là hình bình hành. b) Trên tia đối của tia FD lấy điểm M sao cho FD=FM. Chứng minh tứ giác ABDM là hình bình hành. c) Chứng minh tứ giác AMCD là hình bình hành.
Cho tam giác ABC lấy điểm d bất cứ trên BC đường thẳng qua d và song song với AC cắt AB tại f đường thẳng qua d song song với AB cắt AC tại e a chứng minh tứ giác aedf là hình bình hành b tìm điều kiện của tam giác ABC để tứ giác AE df là hình thang vuông
Cho tam giác ABC. Ở phía ngoài tam giác, vẽ các tam giác vuông cân tại A là ABD, ACE. Vẽ hình bình hành ADIE. Chứng minh rằng :
a) \(IA=BC\)
b) \(IA\perp BC\)
cho tam giác ABC vuông cân tại A. Trên đoạn thằng AB lấy điểm E, trên tia đối của tia CA lấy điểm F sao cho BE=CF. Vẽ hình bình hành BEFD. Gọi I là giao điểm của EF và BC. Qua E kẻ đường thẳng vuông góc với Ab cắt BI tại K
a. cmr tứ giác EKFC là hình bình hành
b. qua I kẻ đường thẳng vuông góc với AF cắt BD tại M. cmr: AI=BM
c. cmr C đối xứng với D qua MF
cho tam giác ABC có đường cao AH . Gợi E và F theo thứ tự là trung điểm của ACvà HC . gọi D là điển đối xứng của A qua F .
a, chứng minh tứ giác ACDH là hình bình hành
b, chứng minh DC vuông góc với BC
c, chứng minh AB +BC > 2BE
Cho tam giác ABC. Dựng đường thẳng song song với BC, cắt AB ở E, cắt cạnh AC ở F sao cho BE = AF ?