b: Xét ΔHEC vuông tại E có EN là đường cao
nên \(HN\cdot HC=HE^2\left(1\right)\)
Xét ΔHEA vuông tại E có EK là đường cao
nên \(HK\cdot HA=HE^2\left(2\right)\)
Từ (1) và (2) suy ra \(HN\cdot HC=HK\cdot HA\)
hay HN/HA=HK/HC
=>ΔHNK đồng dạng với ΔHAC
c: Xét ΔCBA có \(cosB=\dfrac{BA^2+BC^2-AC^2}{2\cdot BA\cdot BC}\)
=>\(BA^2+BC^2-AC^2=2\cdot BA\cdot BC\cdot cos60=BA\cdot BC\)
hay \(AC^2=BA^2+BC^2-BA\cdot BC\)