Cho tam giác ABC cân tại A có góc A bé hơn 90 độ có các đường cao AD và BE cắt nhau tại H. Gọi O là trung điểm của AB
a,Chứng minh ba điểm A,E,H cùng thuộc một đường tròn và Chứng minh tứ giác ABCD nội tiếp
b, DE là tiếp tuyến của đường tròn tâm O
c, Chứng minh tam giác CDE đồng dạng tam giác CAB
Bài 1: Cho ∆ABC có 3 góc nhọn nội tiếp (O;R) các đường cao BE,CF cắt nhau tại H .
a/ Chứng minh: AH vuông góc BC .
b/ AH cắt BC tại D. Kẻ đường kính AK của (O). Chứng mimh: AB.AC = 2R. AD
c/ AK cắt BC tại M. Chứng minh: MB. MC = MA. MK
d/ Gọi I là trung điểm BC. Chứng minh: H, I, K thẳng hàng
Cho tam giác ABC nhọn vẽ đường tròn tâm O đường kính BC cắt AB, AC theo thứ tự tại D và E a) chứng minh CD vuông góc với AB, BE vuông góc với AC b)gọi K là giao điểm BE và CD. chứng minh AK vuông góc với BC
Cho tam giác ABC có 3 góc nhọn nội tiếp trog đường tròn tâm O. 3 đường cao AK, BE, CD cắt nhau tại H
a) c/m tứ giác BDEC nội tiếp , AD.AB=AE.AC
b) chứng tỏ KA là phân giác của góc DKE
Cho tam giác ABC vuông tại A ( AB <AC) vẽ đường tròn (O) đường kính AC , đường tròn (O) cắt BC tại D .Vẽ tiếp tuyến BE của (o) ( E là tiếp điểm) .BO cắt AE tại H
a) Chứng Minh : Tứ giác OB vuông AE và BH.BO=BD.BC
Chứng minh DHOC là tứ giác nội tiếp và BHD=OHC
Giup mk ạ =((((
Cho đường tròn (O) đường kính AB, E thuộc đoạn AO (E khác A,O và AE>EO). Gọi H là trung điểm của AE, CD vuông góc với AE tại H
a. Tính góc ACB
b. Tứ giác ACED là hình gì, chứng minh
c. Gọi I là giao điểm của DE và BC. Chứng minh HI là tiếp tuyến của đường tròn đường kính EB
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O ,( AB < AC) Gọi H là giao điểm ba đường cao BE,CF,AD Kẻ đường kính AK của đường tròn(O)
1 Chứng minh tam giác BAD đồng dạng với tam giác KAC
2 Vẽ tia tiếp tuyến Ax của đường tròn (O) Chứng minh đường thẳng Ax song song với EF
3 Gọi N là giao điểm của AK và EF Chứng minh tứ giác NHDK nội tiếp
cho tam giác abc có 3 góc nhọn, vẽ đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại D và E. BE và CD cắt nhau tại H
a)Chứng minh IO vuông góc DE
b)AH kéo dài cắt BC ở F. CMR: H là tâm đường tròn nội tiếp ΔDFE
Bài 4: Cho tam giác cân ABC (AB = AC), các đường cao AD, BE, cắt nhau tại H. Gọi O là tâm đường tròn ngoại tiếp tam giác AHE. Chứng minh:
Giải giúp mình câu c và d nhé!
a/ tứ giác CEHD nội tiếp . b/Bốn điểm A, E, D, B cùng nằm trên một đường tròn.
c/ tam giác cân EBD cân. d/ DE là tiếp tuyến của đường tròn (O).