a) Xét \(\Delta ABI,\Delta ACI\) có :
\(\widehat{ABI}=\widehat{ACI}\) (ΔABC cân tại A)
\(AB=AC\) (ΔABC cân tại A)
\(\widehat{AIB}=\widehat{AIC}\left(=90^o\right)\)
=> \(\Delta ABI=\Delta ACI\) (cạnh huyền - góc nhọn)
=> \(BI=CI\) (2 cạnh tương ứng)
Do đó : I là trung điểm của BC
b) Xét \(\Delta AEI,\Delta AFI\) có :
\(AE=AF\left(gt\right)\)
\(\widehat{EAI}=\widehat{FAI}\) (do \(\Delta ABI=\Delta ACI\))
\(AI:Chung\)
=> \(\Delta AEI=\Delta AFI\left(c.g.c\right)\)
=> \(IE=IF\) (2 cạnh tương ứng)
Do đó : ΔIEF cân tại I (đpcm)
c) Xét \(\Delta EBI,\Delta FCI\) có :
\(EI=FI\left(cmt-câub\right)\)
\(\widehat{EBI}=\widehat{FCI}\) (ΔABC cân tại A)
\(BI=IC\) (I là trung điểm của BC)
=> \(\Delta EBI=\Delta FCI\left(c.g.c\right)\)
=> đpcm