Bài1: Rút gọn biểu thức A, A= ( căn 2/3 + căn 50/3 - căn 24) . căn 6 B, B= căn 14 - căn 7 / căn 2-1 + căn 15 - căn 5 / căn 3 -1 ) : 1/ căn 7 - căn 5 b, So sánh A và B Bài 2: Giải các phương trình sau a, căn 3x -5 căn 12x + 7 căn 27x =12 b, x / 1+ căn 1+x -1
Cho a lớn hơn hoặc bằng 1 b lớn hơn hoặc bằng 1 chứng minh rằng a căn của B - 1 + b căn của A trừ 1 bé hơn hoặc bằng AB
Cho biểu thức: A= (căn a+2/ căn+1-Căn a-2/ Căn a-1):1/ căn a+1
a) Tìm điều kiện để A có nghĩa
b) Rút gọn biểu thức A
c) Tìm các giá trị nguyên của a để A đạt giá trị nguyên
Bài 1: Khử mẫu của biểu thức dưới căn
a) -xy\(\sqrt{\dfrac{y}{x}}\) ( x >0; y\(\ge\)0)
b) \(\sqrt{\dfrac{5a^3}{49b}}\left(a\ge0;b>0\right)\)
c) \(-7xy\sqrt{\dfrac{3}{xy}}\left(x< 0;y< 0\right)\)
Bài 2: Đưa thừa số ra ngoài căn
a)\(\sqrt{\dfrac{1}{25a^2}}\left(a< 0\right)\)
b) \(\dfrac{1}{3}\sqrt{225a^2}\)
cho biểu thức C=căn x - x a)tìm x để biểu thức C có giá trị dương b) tìm giá trị lớn nhất của C
rút gọn biểu thức P = ( căn a+ 2 /căn a +1 trừ căn a -2 / căn a -1 ) : căn a =1 / căn a
CM \(\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}.\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}=a-b\) (a > 0; b > 0)
toan 9 cho a b c là các số thực dương thỏa mãn a+b+c= 8 . Cm : a/ a+can8a+bc + b/can8b+ca
Cho biểu thức B=1+1/1căn 2+1/căn 3+...+1/căn 2010. Chứng minh rằng B>86