Câu 1: Rút gọn biểu thức
a) \(N=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
b) \(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
Câu 2:
a) Cho a > 0. Chứng minh: \(a+\dfrac{1}{a}\ge2\)
b) Cho \(a\ge0\) , \(b\ge0\) . Chứng minh: \(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\)
c) Cho a, b > 0. Chứng minh: \(\sqrt{a}+\sqrt{b}\le\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\)
d) Chứng minh: \(\dfrac{a^2+2}{\sqrt{a^2+1}}\ge2\) với mọi a
Cho a,b,c>0 và thỏa mãn \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\dfrac{7-abc}{\sqrt{2}}\)
Chứng minh rằng \(M=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{3}{2}\)
Chứng minh rằng:
a> \(\sqrt{\left(a+c\right)\left(b+d\right)}\ge\sqrt{ab}+\sqrt{cd}\) với a,b,c,d >0
b> \(\dfrac{x^2+5}{\sqrt{x^2+4}}>2\)
a)cho a>b>0 chứng minh rằng : \(\dfrac{1}{a+b}\le\dfrac{1}{2\sqrt{ab}}\)
b) Chứng minh \(\dfrac{\sqrt{2}-\sqrt{1}}{3}+\dfrac{\sqrt{3}-\sqrt{2}}{5}+\dfrac{\sqrt{4}-\sqrt{3}}{7}+...+\dfrac{\sqrt{2011}-\sqrt{2010}}{4021}< \dfrac{1}{2}\)
giúp mk vs
chứng minh các bát đẳng thức sau
a)Cho a>0 chứng minh rằng \(a+\dfrac{1}{a}\)≥2
b)\(\dfrac{a^2+a+2}{\sqrt{a^2+a+1}}\)≥2
c)\(\sqrt{a+1}-\sqrt{a}< \dfrac{1}{2\sqrt{a}}\)
cho a,b>1. chứng minh rằng
\(\dfrac{6}{a\sqrt{b-1}+b\sqrt{a-1}}+\sqrt{3ab+4}\ge\dfrac{11}{2}\)
cho a,b,c>0 thỏa mãn abc\(\ge1\)
chứng minh rằng
\(\dfrac{a}{\sqrt{b+\sqrt{ac}}}+\dfrac{b}{\sqrt{c+\sqrt{ab}}}+\dfrac{c}{\sqrt{a+\sqrt{bc}}}\ge\dfrac{3}{\sqrt{2}}\)
Bài 1: Cho x,y,z \(\in\) R. Chứng minh:
1019x2 + 18y4 + 1007z2 \(\ge\) 30xy2 + 6y2z + 2008zx
Bài 2: Tìm 3 số thực x,y,z thỏa mãn:
\(\dfrac{2}{\sqrt{x}+2\sqrt{y}+3\sqrt{2}}-\)\(\dfrac{1}{2\sqrt{xy}+6\sqrt{yz}+3\sqrt{xz}}=\dfrac{1}{3}\)
Bài 3: Cho a,b là 2 số thực dương thay đổi.
P = \(\sqrt{a+b}-\dfrac{1}{\sqrt{a+b}}+\dfrac{2015}{2014a+2006b+6\sqrt{ab}}\)
Tìm GTNN của P
Cần gấp. Ai giúp với!!!
Cho a,b,c dương .Chứng minh:
\(\sum\dfrac{a^6}{b^2+c^2}\ge\dfrac{abc\left(a+b+c\right)}{2}\)