\(\left\{{}\begin{matrix}\sqrt{a}=x\ge0\\\sqrt{b}=y\ge0\end{matrix}\right.\Rightarrow x+y\ge2\)
Ta cm bđt sau: \(2\left(x^3+y^3\right)\ge\left(x+y\right)\left(x^2+y^2\right)\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (đúng)
Mà: \(x+y\ge2\Rightarrow x^3+y^3\ge x^2+y^2\)
\(\Rightarrow\sqrt{a^3}+\sqrt{b^3}\ge a+b\)(đpcm)
\("="\Leftrightarrow a=b=1\)