Cho a,b,c >0 thỏa a+b+c \(\ge9\)
Tìm Min:
\(P=2\sqrt{a^2+\dfrac{b^2}{3}+\dfrac{c^2}{5}}+\sqrt{\dfrac{1}{a}+\dfrac{9}{b}+\dfrac{25}{c}}\)
Cho a>0, b>0 thỏa mãn \(a+b-\sqrt{ab}-4\sqrt{a}-\sqrt{b}+7=0\). Khi đó tổng a + b bằng...
Cho a,b,c là các số thực không âm thỏa mãn \(a^2+b^2+c^2=6\).Tìm giá trị nhỏ nhất:\(P=\sqrt{4-a^2}+\sqrt{4-b^2}+\sqrt{4-c^2}\)
Cho 2 biểu thức
A=\(\dfrac{2x-3\sqrt{x}-2}{\sqrt{x}-2}\) . B=\(\dfrac{\sqrt{X^3}-\sqrt{x}+2x-2}{\sqrt{x}+2}\) với x lớn hơn bằng 0 và x khác 4
a ) tính A khi x =\(4-2\sqrt{3}\) . b )tìm x để B=A+1 . c) tìm min của C=B-A
cho a , b , c > 0 thỏa mãn \(a+b+c+\sqrt{abc}=4\)
Tính giá trị : \(p=\sqrt{a\left(4-b\right)\left(4-c\right)+b\left(4-c\right)\left(4-a\right)-c\left(4-a\right)\left(4-b\right)}-\sqrt{abc}\)
rút gọn:
A=\(x-4-\sqrt{16-8x^2+x^4}\left(x>4\right)\)
B=\(\dfrac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\dfrac{1}{\sqrt{a}+\sqrt{b}}\left(a,b>0,a\ne b\right)\)
Tìm Min
a) \(\sqrt{2-x}+\sqrt{4+x}\)
b)A=\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
Bài 1: Cho a,b>0; \(a^2+b^2\le16.\)Tìm GTLN của M= \(a\sqrt{9b\left(a+8b\right)}+b\sqrt{9a\left(b+8a\right)}\)
Bài 2: Cho a,b,c >\(\dfrac{25}{4}\). Tìm GTNN của P=\(\dfrac{a}{2\sqrt{b}-5}+\dfrac{b}{2\sqrt{c}-5}+\dfrac{c}{2\sqrt{a}-5}\)
Bài 3: Cho a,b,b >0 và ab+bc+ca =1. Chứng minh:
\(\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\le2\left(a+b+c\right)\)
Bài 4: Cho 2 số thực a,b thay đổi, thỏa mãn điều kiện a+b\(\ge1\) và a>0. Tìm GTNN của A= \(\dfrac{8a^2+b}{4a}+b^2\)
Bài 5: Cho x,y thỏa mãn điều kiện \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3.\) Tìm GTNN của A= \(x^2+2xy-2y^2+2y+10\)
Bài 6: Với mọi a>1, chứng minh:
a+\(\dfrac{1}{a-1}\ge3\)
Cho các số dương a,b,c thỏa mãn a+b+c=4
CMR: \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}>4\)