Cho : A = \(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2012}\). Chứng minh : A \(\notin\) N
Chứng tỏ rằng :\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{299}+\dfrac{1}{300}>\dfrac{2}{3}\)
Tính tích \(A=\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}...\dfrac{899}{900}\)
Chứng tỏ rằng : \(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{17}< 2\)
Tính giá trị của biểu thức sau :
\(M=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{10.11.12}\)
a) Tìm số nguyên a sao cho A=\(\dfrac{a^3+3a^2+2a-3}{a+1}\) có giá trị nguyên
b) Cho B=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+......+\dfrac{1}{9^2}\). Chứng minh rằng: \(\dfrac{8}{9}>B>\dfrac{2}{5}\)
a) Cho a\(\in\) N. Chứng minh rằng \(\dfrac{1}{a}-\dfrac{1}{a+1}< \dfrac{1}{a^2}< \dfrac{1}{a-1}-\dfrac{1}{a}\)
Tính nhanh:
11) \(\dfrac{5}{7}\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{4}{7}\right)+\left(\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{4}{7}\right):\dfrac{7}{5}\)
12)\(\dfrac{43}{5}\left(\dfrac{17}{3}-\dfrac{16}{9}+2\right)-\dfrac{43}{5}\left(\dfrac{17}{3}-\dfrac{16}{9}\right)\)
1.Tính nhanh
A=\(\dfrac{2}{7}\)+\(\dfrac{-3}{8}\)+\(\dfrac{11}{7}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{7}\)+\(\dfrac{5}{-3}\)
B=\(\dfrac{3}{17}\)+\(\dfrac{-5}{13}\)+\(\dfrac{-18}{35}\)+\(\dfrac{14}{17}\)+\(\dfrac{17}{-35}\)+\(\dfrac{-8}{13}\)
C=\(\dfrac{-3}{17}\)+(\(\dfrac{2}{3}\)+\(\dfrac{3}{17}\))
D=(\(\dfrac{-1}{6}\)+\(\dfrac{5}{-12}\))+\(\dfrac{7}{12}\)
2.a) Chứng tỏ:\(\dfrac{1}{201}\)+\(\dfrac{1}{212}\)+. . .+\(\dfrac{1}{399}\)+\(\dfrac{1}{400}\)
b)1 < \(\dfrac{1}{5}\)+\(\dfrac{1}{6}\)+. . .+\(\dfrac{1}{16}\)+\(\dfrac{1}{17}\)< 2
Cho \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+................+\dfrac{1}{9^2}\)
Chứng minh \(\dfrac{2}{5}< A< \dfrac{8}{9}\)
Help me!!!!!!!!!!! tôi đang cần gấp!!!
A= \(\dfrac{1}{5^2}\)+\(\dfrac{2}{5^3}\)+\(\dfrac{3}{5^4}\)+.....+\(\dfrac{n}{5^{n+1}}\)+......+\(\dfrac{11}{5^{12}}\) với n\(\in\)N.chứng minh A<\(\dfrac{1}{16}\)
Bài 1: Cho A=\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
a) Chứng minh: A=\(\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{100}\)
b) Chứng minh: A<\(\dfrac{5}{6}\)