Đại số lớp 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Tấn Dũng

A= \(\dfrac{1}{5^2}\)+\(\dfrac{2}{5^3}\)+\(\dfrac{3}{5^4}\)+.....+\(\dfrac{n}{5^{n+1}}\)+......+\(\dfrac{11}{5^{12}}\) với n\(\in\)N.chứng minh A<\(\dfrac{1}{16}\)

Nguyễn Thanh Hằng
8 tháng 5 2017 lúc 20:05

Ta có :

\(A=\dfrac{1}{5^2}+\dfrac{2}{5^3}+\dfrac{3}{5^4}+.............+\dfrac{n}{5^{n+1}}+.....+\dfrac{11}{5^{12}}\)

\(\Rightarrow5A=\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{3^3}+........+\dfrac{n}{5^n}+..........+\dfrac{11}{5^{11}}\)

\(\Rightarrow5A-A=\left(\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+.....+\dfrac{n}{5^n}+....+\dfrac{11}{5^{11}}\right)-\left(\dfrac{1}{5^2}+\dfrac{2}{5^3}+.....+\dfrac{n}{5^{n+1}}+........+\dfrac{11}{5^{12}}\right)\)\(\Rightarrow4A=\dfrac{1}{5}+\dfrac{1}{5^2}+........+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\)

\(\Rightarrow20A=1+\dfrac{1}{5}+.........+\dfrac{1}{5^{10}}-\dfrac{11}{5^{11}}\)

\(\Rightarrow20A-4A=\left(1+\dfrac{1}{5}+.......+\dfrac{1}{5^{10}}-\dfrac{11}{5^{11}}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+........+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\right)\)\(\Rightarrow16A=1-\dfrac{12}{5^{11}}+\dfrac{11}{5^{12}}< 1\)

\(\Rightarrow A< \dfrac{1}{16}\rightarrowđpcm\)


Các câu hỏi tương tự
My Nguyễn
Xem chi tiết
Khánh Linh
Xem chi tiết
Huyền Cơ
Xem chi tiết
Trần Thị Hoàn
Xem chi tiết
Walker Trang
Xem chi tiết
Khánh Linh
Xem chi tiết
thieu vu
Xem chi tiết
Đức Trịnh Minh
Xem chi tiết
Khánh Linh
Xem chi tiết