So sánh A vs \(\dfrac{3}{4}\)
Cho A= \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+......+\dfrac{1}{200^2}\)
Bài 1:
a, Cho A = \(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}\)
Chứng tỏ: A <\(\dfrac{1}{2}\)
b, Cho B = \(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{20}}\)
Chứng tỏ B < 1
c, Cho C = \(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)
Chứng tỏ C < \(\dfrac{1}{2}\)
d, Cho D = \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{20^2}\)
Chứng tỏ D < 1
Cho A\(=\dfrac{\left(3\dfrac{2}{15}+\dfrac{1}{5}\right):2\dfrac{1}{2}}{\left(5\dfrac{3}{7}-2\dfrac{1}{4}\right):4\dfrac{43}{56}}\)
B\(=\dfrac{1,2:\left(1\dfrac{1}{5}\cdot1\dfrac{1}{4}\right)}{0,32+\dfrac{2}{25}}\)
Chứng tỏ A=B
Mọi người giúp em với ạ. em cảm ơn
Chứng tỏ:
\(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\)=2
Tính hợp lí biết:
A = \(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}{\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)-\dfrac{1}{2}.\dfrac{1}{3}.\dfrac{1}{4}}\)
1/.\(\dfrac{1}{1}.\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{4}+\dfrac{1}{4}.\dfrac{1}{5}\)
2/.\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{10100}\)
3/.A = \(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)
4/.A = \(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\)
tính bằng cách thuận tiện nhất ( làm nhanh trước 5h nha , nếu ai làm được thì cho 100 tick , thật đó và trình bày cách diễn giải nha )
Bài 1;Cho:
A=\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{308}+\dfrac{1}{309}\)
B=\(\dfrac{308}{1}+\dfrac{307}{2}+\dfrac{306}{3}+...+\dfrac{3}{306}+\dfrac{2}{307}+\dfrac{1}{308}\)
Tính \(\dfrac{A}{B}\)
So sánh
\(A=\dfrac{1}{2^2}+\dfrac{2}{2^3}+\dfrac{3}{2^4}+...+\dfrac{100}{2^{201}}\)
và \(B=\dfrac{1}{2^3}+\dfrac{1}{3^3}+\dfrac{1}{4^3}+...+\dfrac{1}{100^3}\)
CM: \(\dfrac{1}{4}< A< \dfrac{4}{9}\)
\(A=\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{50^2}\)