Lời giải:
Vế đầu tiên:
Áp dụng BĐT AM-GM:
\(a^2+b^2\geq 2ab\Rightarrow 2(a^2+b^2)\geq (a+b)^2\Leftrightarrow a^2+b^2\geq \frac{(a+b)^2}{2}\)
Do đó, \(\sqrt{a^2+b^2}\geq \frac{a+b}{\sqrt{2}}\). Tương tự với các biểu thức còn lại và cộng theo vế:
\(\Rightarrow S\geq \sqrt{2}(a+b+c)\) (đpcm)
Dấu bằng xảy ra khi $a=b=c$
Vế sau:
Áp dụng BĐT Cauchy-Schwarz:
\(S^2\leq (1+1+1)(a^2+b^2+b^2+c^2+c^2+a^2)\)
\(\Leftrightarrow S^2\leq 6(a^2+b^2+c^2)\Leftrightarrow S\leq \sqrt{6(a^2+b^2+c^2)}\) \((1)\)
Ta sẽ cm \(\sqrt{6(a^2+b^2+c^2)}< \sqrt{3}(a+b+c)\)
\(\Leftrightarrow 2(a^2+b^2+c^2)\leq (a+b+c)^2\Leftrightarrow a^2+b^2+c^2\leq 2(ab+bc+ac)\)
\(\Leftrightarrow a(b+c-a)+b(c+a-b)+c(a+b-c)\geq 0\) (luôn đúng vì $a,b,c$ là độ dài ba cạnh tam giác)
Do đó \(\sqrt{6(a^2+b^2+c^2)}<\sqrt{3}(a+b+c)(2)\)
Từ \((1),(2)\Rightarrow S<\sqrt{3}(a+b+c)\)
Vậy ta có đpcm.