1. Tìm x,y biết;
a) (2x-y6+7)^2012 + |x-3|^2013 bé hơn hoặc bằng 0
b) 2(x-1) - 3(2x+2) - 4(2x+3) = 16
c) (x-5)^x+1 - (x-5)^x+13 =0
d) |3x-4|\(\) bé hơn hoặc bằng 3
2. a) Tìm các số x,y,z biết x:y:z=3:4:5 và 2x^2 +2y^2 + 3z^ =-100
b) Cho a/b = b/c = c/a và a+b+c khác 0. Tính \(\frac{a^3b^2c^{1930}}{a^{1935}}\)
Cho M=\(\frac{a+b}{a+b+c}+\frac{b+c}{b+c+d}+\frac{c+d}{c+d+a}+\frac{d+a}{d+a+b}\)
(a,b,c,d thuộc N*)
cmr m thuộc Z (2<A<3)
Câu 1 :
a) Cho A=\(\frac{2}{11.15}\)+\(\frac{2}{15.19}\)+\(\frac{2}{19.23}\)+...+\(\frac{2}{51.55}\) ; B=(-\(\frac{5}{3}\)).\(\frac{11}{2}\).(\(\frac{1}{3}\)+1)
Tính tích A.B
b) Chứng tỏ rằng các số tự nhiên co dạng abcabc chia hết cho ít nhất 3 số nguyên tố .
Câu 2 :
a) Tìm x biết : \(|3-x|\) = x-5
b) Tìm các số nguyên x, y sao cho : \(\frac{y}{3}\)-\(\frac{1}{x}\)=\(\frac{1}{3}\)
c) Tìm số tự nhiên a, b biết : a-b = 5 và \(\frac{(a,b)}{[a,b]}\)=\(\frac{1}{6}\)
Cho 4điểm A B C D trong đó 3 điểm A B C thẳng hàng ;3 điểm B,C,D thẳng hàng. Hỏi 4 điểm A B C D có thẳng hàng không, vì sao?
Bài 1: Chứng tỏ các tổng sau không là số tự nhiên:
a. A= \(\frac{1}{2}\)+\(\frac{1}{3}\)+\(\frac{1}{4}\)
b. B= \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{8}\)
c. C= \(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
Bài 2: Chứng tỏ rằng:
a. A= \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{20}>\frac{1}{2}\)
b. B=\(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}>\frac{1}{2}\)
c. C= \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{100}>1\)
d. D=\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}>\frac{7}{12}\)
Bài 3: Cho S= \(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}.\)Chứng minh rằng \(\frac{3}{5}< S< \frac{4}{5}\)
Bài 4: Cho B= \(\frac{10n}{5n-3}\), tìm số nguyên n để:
a. B có giá trị nguyên b. B có GTLN
Cho a, b, c, d là các số khác 0 và (a + b + c + d)(a - b - c + d) = (a - b + c - d)(a + b - c - d)
Chứng minh rằng: \(\frac{a}{c}=\frac{b}{d}\)
1. Tính bằng cách hợp lý
a) \(\frac{-1}{5}\cdot\frac{6}{7}+\frac{3}{7}\cdot\frac{3}{5}+\frac{2^5\cdot27}{3^3\cdot64}\)
b) \(2+2^2+2^3+...+2^9\)
2.
a) Tìm x biết \(\dfrac{x+350}{x}+315=92\cdot4-27\)
b) Tìm x,y là số nguyên biết \(\frac{2x+1}{3}=\frac{2}{y}\)
3.
a) Viết các phân số tự nhiên liên tiếp từ 10 đến 99 ta được số M. Hỏi M có chia hết cho 3, chia hết cho 9 không ?
b) Số tự nhiên a chia cho 5 dư 3, chia 9 dư 5, chia 7 dư 4. Tìm a biết a nhỏ nhất.
4.
So sánh S và 1 biết S= \(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\)
5. Cho xOy kề bù với góc yOz, biết góc yOz gấp đôi yOx.
a) Tính số đo mỗi góc
b) Gọi Om là tia phân giác của góc yOz. Tia Oy có là tia phân giác của góc xOm không ? Vì sao ?
c. Vẽ tia Ot sao cho xOt = 20 độ. Tính góc yOt
6.Cho 5 điểm A, B, C, D, E. Cứ đi qua 2 điểm ta vẽ 1 đoạn thẳng. Gọi m là hệ số tam giác tạo thành.
a) Tính giá trị lớn nhất của m
b) Tính giá trị nhỏ nhất của m
1.Tính M= x2-2x+3
tại x thỏa /x+1/=3
2.cho a/b=c/d
Cmr: a/a-b=c/c-d
3.Cmr nếu a/b=c/d thì ac/bd=a2a2/b2d
Cho a,b,c thực thỏa (a+c)(b+c)=4c2.Tìm min
\(T=\frac{32a^3}{\left(b+3c\right)^3}+\frac{32b^3}{\left(a+3c\right)^3}-\frac{\sqrt{a^2+b^2}}{c}\)