\(a=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9\)
\(a=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+\left(2^7+2^8+2^9\right)\)
\(a=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+2^7\left(1+2+2^2\right)\)
\(a=2.7+2^4.7+2^7.7=7\left(2+2^4+2^7\right)⋮7\left(đpcm\right)\)
A=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)
A=2(1+2+2^2)+2^4(1+2+2^2)+2^7(1+2+2^2)
A=2.7+2^4.7+2^7.7\(⋮\)7
Vậy A\(⋮\)7
Cho A= 2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9. Không tính, hãy chứng tỏ A:7
A=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)
A=2(1+2+2^2)+2^4(1+2+2^2)+2^7(1+2+2^2)
A=2.7+2^4.7+2^7.7 \(⋮\) 7
Vậy A \(⋮\) 7