Đặt : \(\sqrt{a}=x\left(x\ge0\right);\sqrt{b}=y\left(y\ge0\right)\)
BPT \(\Leftrightarrow\frac{x^2}{y}+\frac{y^2}{x}-x-y\ge0\)
BĐT dĩ nhiên đúng vì theo BĐT caushy-schwars,ta có:
\(\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\left(dpcm\right)\)
Dấu "=" xảy ra khi x = y <=> a = b