áp dụng tính chất của dãy tỉ số bằng nhau ta có:
...=\(\dfrac{y+z-x+z+x-y+x+y-z}{x+y+z}=\dfrac{x+y+z}{x+y+z}=1\)
từ đó suy ra x=y=z=1
đấy là câu trả lời.Dễ quá!!!
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
...=\(\dfrac{y+z-x+z+x-y+x+y-z}{x+y+z}=\dfrac{x+y+z}{x+y+z}=1\)
từ đó suy ra x=y=z=1
đấy là câu trả lời.Dễ quá!!!
5: Cho x, y, z là 3 số khác 0 và x + y + z ≠ 0 thỏa mãn: \(\dfrac{x}{y+z}=\dfrac{y}{x+z}=\dfrac{z}{y+x}\)
Tính giá trị của biểu thức A: \(\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{y+x}{z}\)
Cho x;y;z là các số thực thỏa mãn:
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)
Tính giá trị của biểu thức A = 2016.x+y2017+z2017
Tìm: x, y, z biết
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)
Tìm x, y, z, biết nếu x + y + z = \(\dfrac{x}{y+z-2}=\dfrac{y}{z+x-3}=\dfrac{z}{x+y+5}\)
\(\dfrac{x^2+xy+y^2}{3}=25;\dfrac{z^2+y^2}{3}=9;x^2+xz+z^2=16\left(x,z\ne0;x\ne-z\right) CMR:\dfrac{2x}{y}=\dfrac{x+y}{y+z}\)
Bài 1 Tìm x, y, z
a)\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)
b)\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)và x+y+z=49
c)\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-4}{4}\) và 2x+3y-z=50
d)\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\) và xyz=810
Giải cụ thể giúp mình nhé!!!
cho 3 số x; y; z thỏa mãn
\(0\le x\le y\le z\le1\)
chứng minh
\(\dfrac{x}{y.z+1}+\dfrac{y}{x.z+1}+\dfrac{z}{x.y+1}\le2\)
Cho \(\dfrac{19}{x+y}+\dfrac{19}{y+z}+\dfrac{19}{z+x}=\dfrac{7x}{y+z}+\dfrac{7y}{z+x}+\dfrac{7z}{x+y}=\dfrac{133}{10}\)
Tính x+y+z?
Câu 1:
a)\(\dfrac{3}{x-1}=\dfrac{4}{y-2}=\dfrac{5}{z-3};x+y+z=18\)
b)\(\dfrac{3}{x-1}=\dfrac{4}{y-2}=\dfrac{5}{z-3};x\cdot y\cdot z=192\)
c)\(2\cdot x=3\cdot y;5\cdot y=3\cdot z;3\cdot x+3\cdot y-7\cdot z=35\)
Câu 2:Tìm 3 số biết tổng các bình phương của chúng bằng 481.Số thứ 2 bằng \(\dfrac{4}{3}\)số thứ nhất và bằng \(\dfrac{3}{4}\)số thứ 3